Theoretical study on the complexes of benzene with isoelectronic nitrogen-containing heterocycles
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18389512
PubMed Central
PMC2970914
DOI
10.1002/cphc.200700587
Knihovny.cz E-zdroje
- MeSH
- benzen chemie MeSH
- chemické modely * MeSH
- dusík chemie MeSH
- elektrony MeSH
- heterocyklické sloučeniny chemie MeSH
- molekulární modely MeSH
- přenos energie MeSH
- stereoizomerie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzen MeSH
- dusík MeSH
- heterocyklické sloučeniny MeSH
The pi-pi interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5-triazine, 1,2,3-triazine, 1,2,4,5-tetrazine, and 1,2,3,4,5-pentazine are systematically investigated. The T-shaped structures of all complexes studied exhibit a contraction of the C--H bond accompanied by a rather large blue shift (40-52 cm(-1)) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced-parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C--H sigma antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart.
Zobrazit více v PubMed
Hunter CA, Sanders JKM. J. Am. Chem. Soc. 1990;112:5525–5534.
Hunter CA, Lawson KR, Perkins J, Urch CJ. J. Chem. Soc. Perkin Trans. 2. 2001;2:651–669.
Meyer EA, Castellano RK, Diederich F. Angew. Chem. 2003;115:1244–1287. Angew. Chem. Int. Ed. 2003, 42, 1210–1250. PubMed
Saenger W. Principles of Nucleic Acid Structure. New York: Springer-Verlag; 1984.
Sinnokrot MO, Sherrill CD. J. Phys. Chem. A. 2006;110:10656–10668. PubMed
Lee EC, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim KS. J. Phys. Chem. A. 2007;111,:3446–3457. PubMed
Arunan E, Gutowski HS. J. Chem. Phys. 1993;98:4294–4296.
Erlekam U, Frankowski M, Meijer G, von Helden G. J. Chem. Phys. 2006;124:171101. PubMed
Janiak C. J. Chem. Soc. Dalton Trans. 2000:3885–3896.
Ugozzoli F, Massera C. CrystEngComm. 2005;7:121–128.
Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K. J. Am. Chem. Soc. 2002;124:104–112. PubMed
Mignon P, Loverix S, De Proft F, Geerlings P. J. Phys. Chem. A. 2004;108:6038–6044.
Mignon P, Loverix S, Geerlings P. Chem. Phys. Lett. 2005;401:40–46.
Hobza P, Spirko V, Selzle HL, Schlag EW. J. Phys. Chem. A. 1998;102:2501–2504.
Hobza P, Havlas Z. Chem. Rev. 2000;100:4253–4264. PubMed
Hobza P, Selzle HL, Schlag EW. J. Phys. Chem. 1996;100:18790–18794.
Hobza P, Selzle HL, Schlag EW. J. Am. Chem. Soc. 1994;116:3500–3506.
Hobza P, Šponer J. J. Am. Chem. Soc. 2002;124:11802–11808. PubMed
Sinnokrot MO, Valeev EF, Sherrill CD. J. Am. Chem. Soc. 2002;124:10887–10893. PubMed
Sinnokrot MO, Sherrill CD. J. Phys. Chem. A. 2004;108:10200–10207.
Sinnokrot MO, Sherrill CD. J. Am. Chem. Soc. 2004;126:7690–7697. PubMed
Feller D. J. Chem. Phys. 1992;96:6104–6114.
Feyereisen MW, Feller D, Dixon DA. J. Phys. Chem. 1996;100:2993–2997.
Boys SF, Bernardi F. Mol. Phys. 1970;19:553–566.
Jeziorski B, Moszynski R, Szalewicz K. Chem. Rev. 1994;94:1887–1930.
Heßelmann A, Jansen G. Chem. Phys. Lett. 2002;362:319–325.
Heßelmann A, Jansen G. Chem. Phys. Lett. 2003;367:778–784.
Heßelmann A, Jansen G, Schütz M. J. Chem. Phys. 2005;122:014103. PubMed
Heßelmann A, Manby FR. J. Chem. Phys. 2005;123:164116. PubMed
Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ. J. Chem. Phys. 2001;114:652–660.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham MAAl-, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
Reed AE, Curtiss LA, Weinhold F. Chem. Rev. 1988;88:899–926.
Werner H-J, Knowles PJ, Lindh R, Manby FR, tz MSchü, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T. MOLPRO, version 2006.1, a package of ab initio programs. See http://www.molpro.net.
Jurečka P, Šponer J, Černý J, Hobza P. Phys. Chem. Chem. Phys. 2006;8:1985–1993. PubMed
The MP2/aug-cc-pVDZ value was calculated by us, and the CCSD(T)/CBS value was taken from ref. [20].
See ref. [20] for binding energies of the benzene dimer.
Wang W, Pitoňák M, Hobza P. ChemPhysChem. 2007;8:2107–2111. PubMed
McDowell SAC, Buckingham AD. J. Am. Chem. Soc. 2005;127:15515–15520. PubMed
Alabugin IV, Manoharan M, Peabody S, Weinhold F. J. Am. Chem. Soc. 2003;125:5973–5987. PubMed