Cathepsin D--many functions of one aspartic protease
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
Grant support
R01 CA082159
NCI NIH HHS - United States
PubMed
18396408
PubMed Central
PMC2635020
DOI
10.1016/j.critrevonc.2008.02.008
PII: S1040-8428(08)00048-6
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease enzymology MeSH
- Apoptosis MeSH
- Atherosclerosis enzymology MeSH
- Protease Inhibitors therapeutic use MeSH
- Isoenzymes MeSH
- Cathepsin D antagonists & inhibitors genetics metabolism MeSH
- Humans MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Biomarkers, Tumor metabolism MeSH
- Neoplasms drug therapy enzymology MeSH
- Enzyme Precursors metabolism MeSH
- Antineoplastic Agents therapeutic use MeSH
- Treatment Outcome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Protease Inhibitors MeSH
- Isoenzymes MeSH
- Cathepsin D MeSH
- Biomarkers, Tumor MeSH
- Enzyme Precursors MeSH
- Antineoplastic Agents MeSH
For years, it has been held that cathepsin D (CD) is involved in rather non-specific protein degradation in a strongly acidic milieu of lysosomes. Studies with CD knock-out mice revealed that CD is not necessary for embryonal development, but it is indispensable for postnatal tissue homeostasis. Mutation that abolishes CD enzymatic activity causes neuronal ceroid lipofuscinosis (NCL) characterized by severe neurodegeneration, developmental regression, visual loss and epilepsy in both animals and humans. In the last decade, however, an increasing number of studies demonstrated that enzymatic function of CD is not restricted solely to acidic milieu of lysosomes with important consequences in regulation of apoptosis. In addition to CD enzymatic activity, it has been shown that apoptosis is also regulated by catalytically inactive mutants of CD which suggests that CD interacts with other important molecules and influences cell signaling. Moreover, procathepsin D (pCD), secreted from cancer cells, acts as a mitogen on both cancer and stromal cells and stimulates their pro-invasive and pro-metastatic properties. Numerous studies found that pCD/CD level represents an independent prognostic factor in a variety of cancers and is therefore considered to be a potential target of anti-cancer therapy. Studies dealing with functions of cathepsin D are complicated by the fact that there are several simultaneous forms of CD in a cell-pCD, intermediate enzymatically active CD and mature heavy and light chain CD. It became evident that these forms may differently regulate the above-mentioned processes. In this article, we review the possible functions of CD and its various forms in cells and organisms during physiological and pathological conditions.
See more in PubMed
Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980;255:4937–4945. PubMed
Kornfeld S. Lysosomal enzyme targeting. Biochem Soc Trans. 1990;18:367–374. PubMed
Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980;255:4946–4950. PubMed
Fortenberry SC, Schorey JS, Chirgwin JM. Role of glycosylation in the expression of human procathepsin D. J Cell Sci. 1995;108:2001–2006. PubMed
von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. PubMed
Rijnboutt S, Kal AJ, Geuze HJ, Aerts H, Strous GJ. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells. J Biol Chem. 1991;266:23586–23592. PubMed
Zhu Y, Conner GE. Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem. 1994;269:3846–3851. PubMed
Capony F, Braulke T, Rougeot C, Roux S, Montcourrier P, Rochefort H. Specific mannose-6-phosphate receptor-independent sorting of pro-cathepsin D in breast cancer cells. Exp Cell Res. 1994;215:154–163. PubMed
Dittmer F, Ulbrich EJ, Hafner A, Schmahl W, Meister T, Pohlmann R, et al. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci. 1999;112:1591–1597. PubMed
Gopalakrishnan MM, Grosch HW, Locatelli-Hoops S, Werth N, Smolenová E, Nettersheim M, et al. Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem J. 2004;383:507–515. PubMed PMC
Erickson AH, Conner GE, Blobel G. Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D. J Biol Chem. 1981;256:11224–11231. PubMed
Conner GE, Richo G. Isolation and characterization of a stable activation intermediate of the lysosomal aspartyl protease cathepsin D. Biochemistry. 1992;31:1142–1147. PubMed
Gieselmann V, Hasilik A, von Figura K. Processing of human cathepsin D in lysosomes in vitro. J Biol Chem. 1985;260:3215–3220. PubMed
Hentze M, Hasilik A, von Figura K. Enhanced degradation of cathepsin D synthesized in the presence of the threonine analog beta-hydroxynorvaline. Arch Biochem Biophys. 1984;230:375–382. PubMed
Samarel AM, Ferguson AG, Decker RS, Lesch M. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation. Am J Physiol. 1989;257:1069–1079. PubMed
Richo G, Conner GE. Proteolytic activation of human procathepsin D. Adv Exp Med Biol. 1991;306:289–296. PubMed
Wittlin S, Rösel J, Hofmann F, Stover DR. Mechanisms and kinetics of procathepsin D activation. Eur J Biochem. 1999;265:384–393. PubMed
Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18:5252–5263. PubMed PMC
Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B. Aspartic proteases in drug discovery. Curr Pharm Des. 2007;13:271–285. PubMed
Vetvicka V, Vagner J, Baudys M, Tang J, Foundling SI, Fusek M. Human breast milk contains procathepsin D-detection by specific antibodies. Biochem Mol Biol Int. 1993;30:921–928. PubMed
Larsen LB, Petersen TE. Identification of five molecular forms of cathepsin D in bovine milk. Adv Exp Med Biol. 1995;362:279–283. PubMed
Benes P, Koelsch G, Dvorak B, Fusek M, Vetvicka V. Detection of procathepsin D in rat milk. Comp Biochem Physiol B Biochem Mol Biol. 2002;133:113–118. PubMed
Zühlsdorf M, Imort M, Hasilik A, von Figura K. Molecular forms of beta-hexosaminidase and cathepsin D in serum and urine of healthy subjects and patients with elevated activity of lysosomal enzymes. Biochem J. 1983;213:733–740. PubMed PMC
Baechle D, Flad T, Cansier A, Steffen H, Schittek B, Tolson J, et al. Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem. 2006;281:5406–5415. PubMed
Leto G, Tumminello FM, Crescimanno M, Flandina C, Gebbia N. Cathepsin D expression levels in nongynecological solid tumors: clinical and therapeutic implications. Clin Exp Metastasis. 2004;21:91–106. PubMed
Laurent-Matha V, Farnoud MR, Lucas A, Rougeot C, Garcia M, Rochefort H. Endocytosis of pro-cathepsin D into breast cancer cells is mostly independent of mannose-6-phosphate receptors. J Cell Sci. 1998;111:2539–2549. PubMed
Laurent-Matha V, Maruani-Herrmann S, Prébois C, Beaujouin M, Glondu M, Noël A, et al. Catalytically inactive human cathepsin D triggers fibroblast invasive growth. J Cell Biol. 2005;168:489–499. PubMed PMC
Poole AR, Hembry RM, Dingle JT. Cathepsin D in cartilage: the immunohistochemical demonstration of extracellular enzyme in normal and pathological conditions. J Cell Sci. 1974;14:139–161. PubMed
Poole AR, Hembry RM, Dingle JT, Pinder I, Ring EF, Cosh J. Secretion and localization of cathepsin D in synovial tissues removed from rheumatoid and traumatized joints. An immunohistochemical study. Arthritis Rheum. 1976;19:1295–1307. PubMed
Bjelle A, Osterlin S. Cathepsin D activity in bovine articular cartilage, synovial membrane and fluid: degradation of cartilage proteoglycans from same joint. J Rheumatol. 1976;3:400–408. PubMed
Vittorio N, Crissman JD, Hopson CN, Herman JH. Histologic assessment of cathepsin D in osteoarthritic cartilage. Clin Exp Rheumatol. 1986;4:221–230. PubMed
Hakala JK, Oksjoki R, Laine P, Du H, Grabowski GA, Kovanen PT, et al. Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2003;23:1430–1436. PubMed
Vashishta A, Saraswat Ohri S, Vetvickova J, Fusek M, Ulrichova J, Vetvicka V. Procathepsin D secreted by HaCaT keratinocyte cells - A novel regulator of keratinocyte growth. Eur J Cell Biol. 2007;86:303–313. PubMed PMC
Dunn BM, Scarborough PE, Lowther WT, Rao-Naik C. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates. Adv Exp Med Biol. 1995;362:1–9. PubMed
Dunn BM, Hung S. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. Biochim Biophys Acta. 2000;1477:231–240. PubMed
Bankowska A, Gacko M, Chyczewska E, Worowska A. Biological and diagnostic role of cathepsin D. Rocz Akad Med Bialymst. 1997;42 Suppl 1:79–85. PubMed
Takei Y, Higashira H, Yamamoto T, Hayashi K. Mitogenic activity toward human breast cancer cell line MCF-7 of two bFGFs purified from sera of breast cancer patients: co-operative role of cathepsin D. Breast Cancer Res Treat. 1997;43:53–63. PubMed
Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi J, et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem. 2000;275:38912–38920. PubMed
Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, et al. Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocrinol. 2004;18:2522–2542. PubMed
Lkhider M, Castino R, Bouguyon E, Isidoro C, Ollivier-Bousquet M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci. 2004;117:5155–5164. PubMed
Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 2000;486:247–251. PubMed
Baumgrass R, Williamson MK, Price PA. Identification of peptide fragments generated by digestion of bovine and human osteocalcin with the lysosomal proteinases cathepsin B, D, L, H, and S. J Bone Miner Res. 1997;12:447–455. PubMed
Dunn AD, Crutchfield HE, Dunn JT. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J Biol Chem. 1991;266:20198–20204. PubMed
Woessner JF, Jr, Shamberger RJ., Jr Purification and properties of cathepsin D from bovine utrus. J Biol Chem. 1971;246:1951–1960. PubMed
Authier F, Mort JS, Bell AW, Posner BI, Bergeron JJ. Proteolysis of glucagon within hepatic endosomes by membrane-associated cathepsins B and D. J Biol Chem. 1995;270:15798–15807. PubMed
Kudo S, Miyamoto G, Kawano K. Proteases involved in the metabolic degradation of human interleukin-1beta by rat kidney lysosomes. J Interferon Cytokine Res. 1999;19:361–367. PubMed
Nunn SE, Peehl DM, Cohen P. Acid-activated insulin-like growth factor binding protein protease activity of cathepsin D in normal and malignant prostatic epithelial cells and seminal plasma. J Cell Physiol. 1997;171:196–204. PubMed
Mordente JA, Choudhury MS, Tazaki H, Mallouh C, Konno S. Hydrolysis of androgen receptor by cathepsin D: its biological significance in human prostate cancer. Br J Urol. 1998;82:431–435. PubMed
Diment S, Martin KJ, Stahl PD. Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. J Biol Chem. 1989;264:13403–13406. PubMed
Wolf M, Clark-Lewis I, Buri C, Langen H, Lis M, Mazzucchelli L. Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta, and SLC that are expressed in human breast cancer. Am J Pathol. 2003;162:1183–1190. PubMed PMC
Nishimura Y, Kawabata T, Kato K. Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys. 1988;261:64–71. PubMed
van der Stappen JW, Williams AC, Maciewicz RA, Paraskeva C. Activation of cathepsin B, secreted by a colorectal cancer cell line requires low pH and is mediated by cathepsin D. Int J Cancer. 1996;67:547–554. PubMed
Nishimura Y, Kawabata T, Furuno K, Kato K. Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch Biochem Biophys. 1989;271:400–406. PubMed
Egberts F, Heinrich M, Jensen JM, Winoto-Morbach S, Pfeiffer S, Wickel M, et al. Cathepsin D is involved in the regulation of transglutaminase 1 and epidermal differentiation. J Cell Sci. 2004;117:2295–2307. PubMed
Sadik G, Kaji H, Takeda K, Yamagata F, Kameoka Y, Hashimoto K, et al. In vitro processing of amyloid precursor protein by cathepsin D. Int J Biochem Cell Biol. 1999;31:1327–1337. PubMed
Ladror US, Snyder SW, Wang GT, Holzman TF, Krafft GA. Cleavage at the amino and carboxyl termini of Alzheimer's amyloid-beta by cathepsin D. J Biol Chem. 1994;269:18422–18428. PubMed
Kenessey A, Nacharaju P, Ko LW, Yen SH. Degradation of tau by lysosomal enzyme cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem. 1997;69:2026–2038. PubMed
Banay-Schwartz M, Bracco F, DeGuzman T, Lajtha A. Developmental changes in the breakdown of brain tubulin by cerebral cathepsin D. Neurochem Res. 1983;8:51–61. PubMed
Benuck M, Marks N, Hashim GA. Metabolic instability of myelin proteins. Breakdown of basic protein induced by brain cathepsin D. Eur J Biochem. 1975;52:615–621. PubMed
Kim YJ, Sapp E, Cuiffo BG, Sobin L, Yoder J, Kegel KB, et al. Lysosomal proteases are involved in generation of N-terminal huntingtin fragments. Neurobiol Dis. 2006;22:346–356. PubMed
Zhou W, Scott SA, Shelton SB, Crutcher KA. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer's disease. Neuroscience. 2006;143:689–701. PubMed
Takahashi M, Ko LW, Kulathingal J, Jiang P, Sevlever D, Yen SH. Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci. 2007;26:863–874. PubMed
Banay-Schwartz M, Dahl D, Hui KS, Lajtha A. The breakdown of the individual neurofilament proteins by cathepsin D. Neurochem Res. 1987;12:361–367. PubMed
Bird JW, Schwartz WN, Spanier AM. Degradation of myofibrillar proteins by cathepsins B and D. Acta Biol Med Ger. 1977;36:1587–1604. PubMed
Jones TL, Ogunro EA, Samarel AM, Ferguson AG, Lesch M. Susceptibilities of cardiac myofibrillar proteins to cathepsin D-catalyzed degradation. Am J Physiol. 1983;245:294–299. PubMed
Okitani A, Matsumoto T, Kitamura Y, Kato H. Purification of cathepsin D from rabbit skeletal muscle and its action towards myofibrils. Biochim Biophys Acta. 1981;662:202–209. PubMed
Simon DI, Ezratty AM, Loscalzo J. The fibrin(ogen)olytic properties of cathepsin D. Biochemistry. 1994;33:6555–6563. PubMed
Loscalzo J. The macrophage and fibrinolysis. Semin Thromb Hemost. 1996;22:503–506. PubMed
Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ. 2004;11:550–563. PubMed
Haendeler J, Popp R, Goy C, Tischler V, Zeiher AM, Dimmeler S. Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis. J Biol Chem. 2005;280:42945–42951. PubMed
Hiraiwa M, Martin BM, Kishimoto Y, Conner GE, Tsuji S, O'Brien JS. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch Biochem Biophys. 1997;341:17–24. PubMed
Pimenta DC, Chen VC, Chao J, Juliano MA, Juliano L. Alpha1-antichymotrypsin and kallistatin hydrolysis by human cathepsin D. J Protein Chem. 2000;19:411–418. PubMed
Lenarcic B, Krasovec M, Ritonja A, Olafsson I, Turk V. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett. 1991;280:211–215. PubMed
van der Westhuyzen DR, Gevers W, Coetzee GA. Cathepsin-D-dependent initiation of the hydrolysis by lysosomal enzymes of apoprotein B from low-density lipoproteins. Eur J Biochem. 1980;112:153–160. PubMed
Roughley PJ. The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan heterogeneity and the pathway of proteolytic degradation. Biochem J. 1977;167:639–646. PubMed PMC
Handley CJ, Mok MT, Ilic MZ, Adcocks C, Buttle DJ, Robinson HC. Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol. 2001;20:543–553. PubMed
Scott PG, Pearson CH. Cathepsin D: cleavage of soluble collagen and crosslinked peptides. FEBS Lett. 1978;88:41–45. PubMed
Scott PG, Pearson H. Cathepsin D: specificity of peptide-bond cleavage in type-I collagen and effects on type-III collagen and procollagen. Eur J Biochem. 1981;114:59–62. PubMed
Tressel T, Shively JE, Pande H. Human placental fibronectin: demonstration of structural differences between the A and B chains in the extra domain-A region. Arch Biochem Biophys. 1988;266:639–643. PubMed
Hultquist DE, Rodriguez C, Schafer DA. Cathepsin D in erythroid cells. Prog Clin Biol Res. 1989;319:93–101. PubMed
Kim K, Homma Y, Ikeuchi Y, Suzuki A. Cleavage of connectin by calpain and cathepsin D. Biosci Biotechnol Biochem. 1995;59:896–899. PubMed
Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 1995;14:3599–3608. PubMed PMC
Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23:2881–2890. PubMed
Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, et al. Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci. 2003;22:146–161. PubMed
Myllykangas L, Tyynelä J, Page-McCaw A, Rubin GM, Haltia MJ, Feany MB. Cathepsin D-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses. Neurobiol Dis. 2005;19:194–199. PubMed
Tyynelä J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, et al. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000;19:2786–2792. PubMed PMC
Tyynelä J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, et al. Congenital ovine neuronal ceroid lipofuscinosis-a cathepsin D deficiency with increased levels of the inactive enzyme. Eur J Paediatr Neurol. 2001;5 Suppl A:43–45. PubMed
Awano T, Katz ML, O'Brien DP, Taylor JF, Evans J, Khan S, et al. A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab. 2006;87:341–348. PubMed
Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78:988–998. PubMed PMC
Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129:1438–1445. PubMed
Partanen S, Storch S, Löffler HG, Hasilik A, Tyynelä J, Braulke T. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells. Biochem J. 2003;369:55–62. PubMed PMC
Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000;20:6898–6906. PubMed PMC
Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, et al. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease) Am J Pathol. 2005;167:1713–1728. PubMed PMC
Walls KC, Klocke BJ, Saftig P, Shibata M, Uchiyama Y, Roth KA, et al. Altered regulation of phosphatidylinositol 3-kinase signaling in cathepsin D-deficient brain. Autophagy. 2007;3:222–229. PubMed
Shacka JJ, Klocke BJ, Young C, Shibata M, Olney JW, Uchiyama Y, et al. Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J Neurosci. 2007;27:2081–2090. PubMed PMC
Zhang D, Brankov M, Makhija MT, Robertson T, Helmerhorst E, Papadimitriou JM, et al. Correlation between inactive cathepsin D expression and retinal changes in mcd2/mcd2 transgenic mice. Invest Ophthalmol Vis Sci. 2005;46:3031–3038. PubMed
Chen SH, Arany I, Apisarnthanarax N, Rajaraman S, Tyring SK, Horikoshi T, et al. Response of keratinocytes from normal and psoriatic epidermis to interferon-gamma differs in the expression of zinc-alpha(2)-glycoprotein and cathepsin D. FASEB J. 2000;14:565–571. PubMed
Kawada A, Hara K, Kominami E, Hiruma M, Noguchi H, Ishibashi A. Processing of cathepsins L, B and D in psoriatic epidermis. Arch Dermatol Res. 1997;289:87–93. PubMed
Kim SY, Chung SI, Yoneda K, Steinert PM. Expression of transglutaminase 1 in human epidermis. J Invest Dermatol. 1995;104:211–217. PubMed
Negi M, Matsui T, Ogawa H. Mechanism of regulation of human epidermal transglutaminase. J Invest Dermatol. 1981;77:389–392. PubMed
Negi M, Park JK, Ogawa H. Alteration of human epidermal transglutaminase during its activation. J Dermatol Sci. 1990;1:167–171. PubMed
Steinert PM, Chung SI, Kim SY. Inactive zymogen and highly active proteolytically processed membrane-bound forms of the transglutaminase 1 enzyme in human epidermal keratinocytes. Biochem Biophys Res Commun. 1996;221:101–106. PubMed
Kim SY, Bae CD. Calpain inhibitors reduce the cornified cell envelope formation by inhibiting proteolytic processing of transglutaminase 1. Exp Mol Med. 1998;30:257–262. PubMed
Bröker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res. 2005;11:3155–3162. PubMed
Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000;470:35–39. PubMed
Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003;22:3927–3936. PubMed
Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 2003;197:1323–1334. PubMed PMC
Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem. 2003;278:31401–31411. PubMed
Roberg K, Ollinger K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol. 1998;152:1151–1156. PubMed PMC
Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med. 2003;34:1295–1305. PubMed
Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C. Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med. 2007;42:1305–1316. PubMed
Kagedal K, Johansson AC, Johansson U, Heimlich G, Roberg K, Wang NS, et al. Lysosomal membrane permeabilization during apoptosis-involvement of Bax? Int J Exp Pathol. 2005;86:309–321. PubMed PMC
Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J. 2001;359:335–343. PubMed PMC
Zhao M, Antunes F, Eaton JW, Brunk UT. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem. 2003;270:3778–3786. PubMed
Kolesnick R, Hannun YA. Ceramide and apoptosis. Trends Biochem Sci. 1999;24:224–225. PubMed
Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000;10:73–80. PubMed
De Stefanis D, Reffo P, Bonelli G, Baccino FM, Sala G, Ghidoni R, et al. Increase in ceramide level alters the lysosomal targeting of cathepsin D prior to onset of apoptosis in HT-29 colon cancer cells. Biol Chem. 2002;383:989–999. PubMed
Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 1996;15:3861–3870. PubMed PMC
Roberg K, Kagedal K, Ollinger K. Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. Am J Pathol. 2002;161:89–96. PubMed PMC
Schestkowa O, Geisel D, Jacob R, Hasilik A. The catalytically inactive precursor of cathepsin D induces apoptosis in human fibroblasts and HeLa cells. J Cell Biochem. 2007;101:1558–1566. PubMed
Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE. Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther. 2005;4:733–742. PubMed
Wu GS, Saftig P, Peters C, El-Deiry WS. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene. 1998;16:2177–2183. PubMed
Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C. Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis. 2007;28:922–931. PubMed
Beaujouin M, Baghdiguian S, Glondu-Lassis M, Berchem G, Liaudet-Coopman E. Overexpression of both catalytically-active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene. 2006;25:1967–1973. PubMed PMC
Shibata M, Kanamori S, Isahara K, Ohsawa Y, Konishi A, Kametaka S, et al. Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun. 1998;251:199–203. PubMed
Roberg K, Johansson U, Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999;27:1228–1237. PubMed
Kagedal K, Johansson U, Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001;15:1592–1594. PubMed
Tardy C, Tyynelä J, Hasilik A, Levade T, Andrieu-Abadie N. Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death Differ. 2003;10:1090–1100. PubMed
Reiners JJ, Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ. 2002;9:934–944. PubMed PMC
Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21:5951–5955. PubMed
Zaidi N, Burster T, Sommandas V, Herrmann T, Boehm BO, Driessen C, et al. A novel cell penetrating aspartic protease inhibitor blocks processing and presentation of tetanus toxoid more efficiently than pepstatin A. Biochem Biophys Res Commun. 2007;364:243–249. PubMed
Bessodes M, Antonakis K, Herscovici J, Garcia M, Rochefort H, Capony F, et al. Inhibition of cathepsin D by tripeptides containing statine analogs. Biochem Pharmacol. 1999:58329–58333. PubMed
Yoshida H, Okamoto K, Iwamoto T, Sakai E, Kanaoka K, Hu JP, et al. Pepstatin A, an aspartic proteinase inhibitor, suppresses RANKL-induced osteoclast differentiation. J Biochem. 2006;139:583–590. PubMed
Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett. 1999;442:117–121. PubMed
Dash C, Kulkarni A, Dunn B, Rao M. Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol. 2003;38:89–119. PubMed
Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766. PubMed
Cataldo AM, Paskevich PA, Kominami E, Nixon RA. Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88:10998–11002. PubMed PMC
Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, et al. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14:671–680. PubMed
Cataldo AM, Nixon RA. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci U S A. 1990;87:3861–3865. PubMed PMC
Schwagerl AL, Mohan PS, Cataldo AM, Vonsattel JP, Kowall NW, Nixon RA. Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease. J Neurochem. 1995;64:443–446. PubMed
Ginsberg SD, Hemby SE, Lee VM, Eberwine JH, Trojanowski JQ. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol. 2000;48:77–87. PubMed
Spires TL, Hyman BT. Transgenic models of Alzheimer's disease: learning from animals. NeuroRx. 2005;2:423–437. PubMed PMC
Saftig P, Peters C, von Figura K, Craessaerts K, Van Leuven F, De Strooper B. Amyloidogenic processing of human amyloid precursor protein in hippocampal neurons devoid of cathepsin D. J Biol Chem. 1996;271:27241–27244. PubMed
Touitou I, Capony F, Brouillet JP, Rochefort H. Missense polymorphism (C/T224) in the human cathepsin D pro-fragment determined by polymerase chain reaction-single strand conformational polymorphism analysis and possible consequences in cancer cells. Eur J Cancer. 1994;30A:390–394. PubMed
Masa M, Maresova L, Vondrasek JR, Horn M, Jezek J, Mares M. Cathepsin d propeptide: mechanism and regulation of its interaction with the catalytic core. Biochemistry. 2006;45:15474–15482. PubMed
Mariani E, Seripa D, Ingegni T, Nocentini G, Mangialasche F, Ercolani S, et al. Interaction of CTSD and A2M polymorphisms in the risk for Alzheimer's disease. J Neurol Sci. 2006;247:187–191. PubMed
Heun R, Ptok U, Kölsch H, Maier W, Jessen F. Contribution of apolipoprotein E and cathepsin D genotypes to the familial aggregation of Alzheimer's disease. Dement Geriatr Cogn Disord. 2004;18:151–158. PubMed
Papassotiropoulos A, Bagli M, Kurz A, Kornhuber J, Förstl H, Maier W, et al. A genetic variation of cathepsin D is a major risk factor for Alzheimer's disease. Ann Neurol. 2000;47:399–403. PubMed
Papassotiropoulos A, Lewis HD, Bagli M, Jessen F, Ptok U, Schulte A, et al. Cerebrospinal fluid levels of beta-amyloid(42) in patients with Alzheimer's disease are related to the exon 2 polymorphism of the cathepsin D gene. Neuroreport. 2002;13:1291–1294. PubMed
Riemenschneider M, Blennow K, Wagenpfeil S, Andreasen N, Prince JA, Laws SM, et al. The cathepsin D rs17571 polymorphism: effects on CSF tau concentrations in Alzheimer disease. Hum Mutat. 2006;27:532–537. PubMed
Davidson Y, Gibbons L, Pritchard A, Hardicre J, Wren J, Tian J, et al. Genetic associations between cathepsin D exon 2 C→T polymorphism and Alzheimer's disease, and pathological correlations with genotype. J Neurol Neurosurg Psychiatry. 2006;77:515–517. PubMed PMC
Ntais C, Polycarpou A, Ioannidis JP. Meta-analysis of the association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer's disease: a HuGE gene-disease association review. Am J Epidemiol. 2004;159:527–536. PubMed
Bertram L, McQueen M, Mullin K, Blacker D, Tanzi R. The AlzGene Database. Alzheimer Research Forum. [Accessed September 20th, 2007]. Available at http://www.alzforum.org/res/com/gen/alzgene/meta.asp?geneID=42. PubMed
Lusis AJ. Atherosclerosis. Nature. 2000;407:233–241. PubMed PMC
Duran MC, Martin-Ventura JL, Mohammed S, Barderas MG, Blanco-Colio LM, Mas S, et al. Atorvastatin modulates the profile of proteins released by human atherosclerotic plaques. Eur J Pharmacol. 2007;562:119–129. PubMed
Leake DS. Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions? Atherosclerosis. 1997;129:149–157. PubMed
Tapper H, Sundler R. Cytosolic pH regulation in mouse macrophages. Proton extrusion by plasma-membrane-localized H(+)-ATPase. Biochem J. 1992;281:245–250. PubMed PMC
Chen GC, Lau K, Hamilton RL, Kane JP. Differences in local conformation in human apolipoprotein B-100 of plasma low density and very low density lipoproteins as identified by cathepsin D. J Biol Chem. 1991;266:12581–12587. PubMed
Chen GC, Liu W, Duchateau P, Allaart J, Hamilton RL, Mendel CM, et al. Conformational differences in human apolipoprotein B-100 among subspecies of low density lipoproteins (LDL). Association of altered proteolytic accessibility with decreased receptor binding of LDL subspecies from hypertriglyceridemic subjects. J Biol Chem. 1994;269:29121–29128. PubMed
Björkerud S, Björkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol. 1996;149:367–380. PubMed PMC
Yuan XM, Li W, Olsson AG, Brunk UT. The toxicity to macrophages of oxidized low-density lipoprotein is mediated through lysosomal damage. Atherosclerosis. 1997;133:153–161. PubMed
Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ, et al. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol. 1996;179:294–302. PubMed
Mitchinson MJ, Ball RY, Carpenter KH, Enright JH, Brabbs CE. Ceroid, macrophages and atherosclerosis. Biochem Soc Trans. 1990;18:1066–1069. PubMed
Li W, Yuan XM, Brunk UT. OxLDL-induced macrophage cytotoxicity is mediated by lysosomal rupture and modified by intralysosomal redox-active iron. Free Radic Res. 1998;29:389–398. PubMed
Li W, Yuan XM. Increased expression and translocation of lysosomal cathepsins contribute to macrophage apoptosis in atherogenesis. Ann N Y Acad Sci. 2004;1030:427–433. PubMed
Haidar B, Kiss RS, Sarov-Blat L, Brunet R, Harder C, McPherson R, et al. Cathepsin D, a lysosomal protease, regulates ABCA1-mediated lipid efflux. J Biol Chem. 2006;281:39971–39981. PubMed
Reid WA, Valler MJ, Kay J. Immunolocalization of cathepsin D in normal and neoplastic human tissues. J Clin Pathol. 1986;39:1323–1330. PubMed PMC
Thorpe SM, Rochefort H, Garcia M, Freiss G, Christensen IJ, Khalaf S, et al. Association between high concentrations of Mr 52,000 cathepsin D and poor prognosis in primary human breast cancer. Cancer Res. 1989;49:6008–6014. PubMed
Spyratos F, Maudelonde T, Brouillet JP, Brunet M, Defrenne A, Andrieu C, et al. Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet. 1989;2:1115–1118. PubMed
Ioachin E. Immunohistochemical tumour markers in endometrial carcinoma. Eur J Gynaecol Oncol. 2005;26:363–371. PubMed
Cunat S, Hoffmann P, Pujol P. Estrogens and epithelial ovarian cancer. Gynecol Oncol. 2004;94:25–32. PubMed
Rochefort H, Liaudet-Coopman E. Cathepsin D in cancer metastasis: a protease and a ligand. APMIS. 1999;107:86–95. PubMed
Mirza AN, Mirza NQ, Vlastos G, Singletary SE. Prognostic factors in node-negative breast cancer: a review of studies with sample size more than 200 and follow-up more than 5 years. Ann Surg. 2002;235:10–26. PubMed PMC
Ferrandina G, Scambia G, Bardelli F, Benedetti Panici P, Mancuso S, et al. Relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients: a meta-analysis. Br J Cancer. 1997;76:661–666. PubMed PMC
Foekens JA, Look MP, Bolt-de Vries J, Meijer-van Gelder ME, van Putten WL, Klijn JG. Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 patients. Br J Cancer. 1999;79:300–307. PubMed PMC
Billgren AM, Rutqvist LE, Johansson H, Hägerström T, Skoog L. The role of cathepsin D and PAI-1 in primary invasive breast cancer as prognosticators and predictors of treatment benefit with adjuvant tamoxifen. Eur J Cancer. 2000;36:1374–1380. PubMed
Rodríguez J, Vázquez J, Corte MD, Lamelas M, Bongera M, Corte MG, et al. Clinical significance of cathepsin D concentration in tumor cytosol of primary breast cancer. Int J Biol Markers. 2005;20:103–111. PubMed
Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–5312. PubMed
Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H. Autocrine growth stimulation of the MCF 7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinology. 1986;118:1537–1545. PubMed
Fusek M, Vetvicka V. Mitogenic function of human procathepsin D: the role of the propeptide. Biochem J. 1994;303:775–780. PubMed PMC
Vetvicka V, Vetvickova J, Fusek M. Effect of human procathepsin D on proliferation of human cell lines. Cancer Lett. 1994;79:131–135. PubMed
Vetvicka V, Vetvickova J, Fusek M. Effect of procathepsin D and its activation peptide on prostate cancer cells. Cancer Lett. 1998;129:55–59. PubMed
Vetvicka V, Vetvickova J, Fusek M. Role of procathepsin D activation peptide in prostate cancer growth. Prostate. 2000;44:1–7. PubMed
Bazzett LB, Watkins CS, Gercel-Taylor C, Taylor DD. Modulation of proliferation and chemosensitivity by procathepsin D and its peptides in ovarian cancer. Gynecol Oncol. 1999;74:181–187. PubMed
Vetvicka V, Vetvickova J, Benes P. Role of enzymatically inactive procathepsin D in lung cancer. Anticancer Res. 2004;24:2739–2743. PubMed
Vashishta A, Ohri SS, Proctor M, Fusek M, Vetvicka V. Role of activation peptide of procathepsin D in proliferation and invasion of lung cancer cells. Anticancer Res. 2006;26:4163–4170. PubMed
Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M. Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene. 2002;21:5127–5134. PubMed
Ohri SS, Vashishta A, Proctor M, Fusek M, Vetvicka V. Depletion of Procathepsin D Gene Expression by RNA Interference: A Potential Therapeutic Target for Breast Cancer. Cancer Biol Ther. 2007 in press. PubMed
Vashishta A, Ohri SS, Proctor M, Fusek M, Vetvicka V. Ribozyme-targeting procathepsin D and its effect on invasion and growth of breast cancer cells: an implication in breast cancer therapy. Int J Oncol. 2007;30:1223–1230. PubMed
Vetvicka V, Vetvickova J, Hilgert I, Voburka Z, Fusek M. Analysis of the interaction of procathepsin D activation peptide with breast cancer cells. Int J Cancer. 1997;73:403–409. PubMed
Vetvicka V, Vetvickova J, Fusek M. Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res Treat. 1999;57:261–269. PubMed
Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–1198. PubMed
Montcourrier P, Silver I, Farnoud R, Bird I, Rochefort H. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis. 1997;15:382–392. PubMed
Glondu M, Coopman P, Laurent-Matha V, Garcia M, Rochefort H, Liaudet-Coopman E. A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells. Oncogene. 2001;20:6920–6929. PubMed
Capony F, Rougeot C, Montcourrier P, Cavailles V, Salazar G, Rochefort H. Increased secretion, altered processing, and glycosylation of pro-cathepsin D in human mammary cancer cells. Cancer Res. 1989;49:3904–3909. PubMed
Maguchi S, Taniguchi N, Makita A. Elevated activity and increased mannose-6-phosphate in the carbohydrate moiety of cathepsin D from human hepatoma. Cancer Res. 1988;48:362–367. PubMed
Mathieu M, Rochefort H, Barenton B, Prebois C, Vignon F. Interactions of cathepsin-D and insulin-like growth factor-II (IGF-II) on the IGF-II/mannose-6-phosphate receptor in human breast cancer cells and possible consequences on mitogenic activity of IGF-II. Mol Endocrinol. 1990;4:1327–1335. PubMed
Vignon F, Rochefort H. Interactions of pro-cathepsin D and IGF-II on the mannose-6-phosphate/IGF-II receptor. Breast Cancer Res Treat. 1992;22:47–57. PubMed
Vetvicka V, Benes P, Fusek M. Procathepsin D in breast cancer: what do we know? Effects of ribozymes and other inhibitors. Cancer Gene Ther. 2002;9:854–863. PubMed
Ohri SS, Vashishta A, Proctor M, Fusek M, Vetvicka V. The propeptide of cathepsin D increases proliferation, invasion and metastasis of breast cancer cells. Int J Oncol. 2008;32:491–498. PubMed
Baldwin ET, Bhat TN, Gulnik S, Hosur MV, Sowder RC, Cachau RE, et al. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci U S A. 1993;90:6796–6800. PubMed PMC
Metcalf P, Fusek M. Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. EMBO J. 1993;12:1293–1302. PubMed PMC
Koelsch G, Metcalf P, Vetvicka V, Fusek M. Human procathepsin D: three-dimensional model and isolation. Adv Exp Med Biol. 1995;362:273–278. PubMed
Garcia M, Derocq D, Pujol P, Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency. Oncogene. 1990;5:1809–1814. PubMed
Tedone T, Correale M, Barbarossa G, Casavola V, Paradiso A, Reshkin SJ. Release of the aspartyl protease cathepsin D is associated with and facilitates human breast cancer cell invasion. FASEB J. 1997;11:785–792. PubMed
Sivaparvathi M, Sawaya R, Chintala SK, Go Y, Gokaslan ZL, Rao JS. Expression of cathepsin D during the progression of human gliomas. Neurosci Lett. 1996;208:171–174. PubMed
Lösch A, Schindl M, Kohlberger P, Lahodny J, Breitenecker G, Horvat R, et al. Cathepsin D in ovarian cancer: prognostic value and correlation with p53 expression and microvessel density. Gynecol Oncol. 2004;92:545–552. PubMed
González-Vela MC, Garijo MF, Fernández F, Buelta L, Val-Bernal JF. Cathepsin D in host stromal cells is associated with more highly vascular and aggressive invasive breast carcinoma. Histopathology. 1999;34:35–42. PubMed
Briozzo P, Badet J, Capony F, Pieri I, Montcourrier P, Barritault D, et al. MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: a permissive role of cathepsin D. Exp Cell Res. 1991;194:252–259. PubMed
Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA, Goffin V. A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol Endocrinol. 2006;20:3263–3278. PubMed
Benes P, Vashishta A, Saraswat-Ohri S, Fusek M, Pospisilova S, Tichy B, et al. Effect of procathepsin D activation peptide on gene expression of breast cancer cells. Cancer Lett. 2006;239:46–54. PubMed
Fusek M, Vetvickova J, Vetvicka V. Secretion of cytokines in breast cancer cells: the molecular mechanism of procathepsin D proliferative effects. J Interferon Cytokine Res. 2007;27:191–199. PubMed
Ohri SS, Vashishta A, Vetvickova J, Fusek M, Vetvicka V. Procathepsin D expression correlates with invasive and metastatic phenotype of MDA-MB-231 derived cell lines. Int J Biol Macromol. 2007;41:204–209. PubMed
Vashishta A, Fusek M, Vetvicka V. Possible role of procathepsin D in human cancer. Folia Microbiol. 2005;50:71–76. PubMed
Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237:167–179. PubMed
Tumminello FM, Leto G, Gebbia N, Rausa L, Bernacki RJ. Evaluation of antitumor and antimetastatic activity of pepstatin A in some experimental tumor models. J Chemother. 1989;1:1135–1138. PubMed
Tumminello FM, Bernacki RJ, Gebbia N, Leto G. Pepstatins: aspartic proteinase inhibitors having potential therapeutic applications. Med Res Rev. 1993;13:199–208. PubMed
Leto G, Pizzolanti G, Tumminello FM, Gebbia N. Effects of E-64 (cysteine-proteinase inhibitor) and pepstatin (aspartyl-proteinase inhibitor) on metastasis formation in mice with mammary and ovarian tumors. In Vivo. 1994;8:231–236. PubMed
Agostinelli E, Seiler N. Lysosomotropic compounds and spermine enzymatic oxidation products in cancer therapy (Review) Int J Oncol. 2007;31:473–484. PubMed
Vetvicka V, Fusek M. Activation of peripheral blood neutrophils and lymphocytes by human procathepsin D and insulin-like growth factor II. Cell Immunol. 1994;156:332–341. PubMed
Enzymatically active cathepsin D sensitizes breast carcinoma cells to TRAIL