Characterization of a restriction modification system from the commensal Escherichia coli strain A0 34/86 (O83:K24:H31)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18588664
PubMed Central
PMC2481252
DOI
10.1186/1471-2180-8-106
PII: 1471-2180-8-106
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA restrikčně-modifikační enzymy genetika metabolismus MeSH
- Escherichia coli enzymologie genetika MeSH
- genomika MeSH
- proteiny z Escherichia coli genetika metabolismus MeSH
- protilátky bakteriální metabolismus MeSH
- restrikční endonukleasy typu I genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- sekvenční seřazení MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA restrikčně-modifikační enzymy MeSH
- HsdM protein, Bacteria MeSH Prohlížeč
- HsdR protein, E coli MeSH Prohlížeč
- proteiny z Escherichia coli MeSH
- protilátky bakteriální MeSH
- restrikční endonukleasy typu I MeSH
BACKGROUND: Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. RESULTS: We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. CONCLUSION: Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.
Zobrazit více v PubMed
Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 2007;35:D269–70. PubMed PMC
Dryden DT, Murray NE, Rao DN. Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res. 2001;29:3728–3741. PubMed PMC
Barcus VA, Titheradge AJ, Murray NE. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics. 1995;140:1187–1197. PubMed PMC
Titheradge AJ, King J, Ryu J, Murray NE. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res. 2001;29:4195–4205. PubMed PMC
Fuller-Pace FV, Cowan GM, Murray NE. EcoA and EcoE: alternatives to the EcoK family of type I restriction and modification systems of Escherichia coli. J Mol Biol. 1985;186:65–75. PubMed
Chin V, Valinluck V, Magaki S, Ryu J. KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system. Nucl Acids Res. 2004;32:e138. PubMed PMC
Raleigh EA. Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol. 1992;6:1079–1086. PubMed
Sibley MH, Raleigh EA. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives. Nucleic Acids Res. 2004;32:522–534. PubMed PMC
Lodinova R, Jouja V, Lanc A. Influence of the intestinal flora on the development of immune reactions in infants. J Bacteriol. 1967;93:797–800. PubMed PMC
Lodinova R, Hanikova M, Jouja V. Some cellular immune reactions in infants. MIF, E-rosette formation and changes in nucleolar morphology. Folia Microbiol (Praha) 1980;25:74–80. PubMed
Hejnova J, Dobrindt U, Nemcova R, Rusniok C, Bomba A, Frangeul L, Hacker J, Glaser P, Sebo P, Buchrieser C. Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) Microbiology. 2005;151:385–398. PubMed
Ellrott KP, Kasarjian JK, Jiang T, Ryu J. Restriction enzyme recognition sequence search program. Biotechniques. 2002;33:1322–1326. PubMed
Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:529–533. PubMed
Welch RA, Burland V, Plunkett G, III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, Blattner FR. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli 10.1073/pnas.252529799. PNAS. 2002;99:17020–17024. PubMed PMC
Sharp PM, Kelleher JE, Daniel AS, Cowan GM, Murray NE. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci U S A. 1992;89:9836–9840. PubMed PMC
Titheradge AJ, Ternent D, Murray NE. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA [published erratum appears in Mol Microbiol 1997 Feb;23(4):851] Mol Microbiol. 1996;22:437–447. PubMed
Kannan P, Cowan GM, Daniel AS, Gann AA, Murray NE. Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J Mol Biol. 1989;209:335–344. PubMed
Cowan GM, Daniel AS, Gann AA, Kelleher JE, Murray NE. Defining domains in type-I restriction and modification enzymes. Gene. 1988;74:239–241. PubMed
Schouler C, Gautier M, Ehrlich SD, Chopin MC. Combinational variation of restriction modification specificities in Lactococcus lactis doi:10.1046/j.1365-2958.1998.00787.x. Molecular Microbiology. 1998;28:169–178. PubMed
Hubacek J, Weiserova M. DNA restriction and modification in Escherichia coli: functional analysis of the role of the dnaC(D) gene product. J Gen Microbiol. 1980;119:231–238. PubMed
Murray NE, Gough JA, Suri B, Bickle TA. Structural homologies among type I restriction-modification systems. Embo J. 1982;1:535–539. PubMed PMC
Kasarjian JKA, Iida M, Ryu J. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method. Nucl Acids Res. 2003;31:e22. PubMed PMC
Murray NE. Special uses of lambda phage for molecular cloning. Methods Enzymol. 1991;204:280–301. PubMed
Thomson JM, Parrott WA. pMECA: a cloning plasmid with 44 unique restriction sites that allows selection of recombinants based on colony size. Biotechniques. 1998;24:922–4, 926, 928. PubMed
Kasarjian JKA, Kodama Y, Iida M, Matsuda K, Ryu J. Four new type I restriction enzymes identified in Escherichia coli clinical isolates 10.1093/nar/gni114. Nucl Acids Res. 2005;33:e114. PubMed PMC
Hochhut B, Wilde C, Balling G, Middendorf B, Dobrindt U, Brzuszkiewicz E, Gottschalk G, Carniel E, Hacker J. Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536 doi:10.1111/j.1365-2958.2006.05255.x. Molecular Microbiology. 2006;61:584–595. PubMed
Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol. 2004;186:595–600. PubMed PMC
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Manual. 2nd. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press; 1989.
Weiserova M, Janscak P, Zinkevich V, Hubacek J. Overproduction of the Hsd subunits leads to the loss of temperature-sensitive restriction and modification phenotype. Folia Microbiol (Praha) 1994;39:452–458. PubMed
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed
Holubova II, Vejsadova S, Firman K, Weiserova M. Cellular localization of Type I restriction-modification enzymes is family dependent. Biochem Biophys Res Commun. 2004;319:375–380. PubMed
Kasarjian JKA, Hidaka M, Horiuchi T, Iida M, Ryu J. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI. Nucl Acids Res. 2004;32:e82. PubMed PMC
Kong H, Lin LF, Porter N, Stickel S, Byrd D, Posfai J, Roberts RJ. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res. 2000;28:3216–3223. PubMed PMC
Thorpe PH, Ternent D, Murray NE. The specificity of sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res. 1997;25:1694–1700. PubMed PMC
Loenen WA, Daniel AS, Braymer HD, Murray NE. Organization and sequence of the hsd genes of Escherichia coli K-12. J Mol Biol. 1987;198:159–170. PubMed
Yokoyama K, Makino K, Kubota Y, Watanabe M, Kimura S, Yutsudo CH, Kurokawa K, Ishii K, Hattori M, Tatsuno I, Abe H, Yoh M, Iida T, Ohnishi M, Hayashi T, Yasunaga T, Honda T, Sasakawa C, Shinagawa H. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak. Gene. 2000;258:127–139. PubMed
Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189:113–130. PubMed
Buchrieser C, Rusniok C, Frangeul L, Couve E, Billault A, Kunst F, Carniel E, Glaser P. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun. 1999;67:4851–4861. PubMed PMC
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. PubMed
Janscak P, Bickle TA. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain. J Mol Biol. 1998;284:937–948. PubMed
General and molecular microbiology and microbial genetics in the IM CAS