Characterization of a restriction modification system from the commensal Escherichia coli strain A0 34/86 (O83:K24:H31)

. 2008 Jun 27 ; 8 () : 106. [epub] 20080627

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18588664

BACKGROUND: Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. RESULTS: We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. CONCLUSION: Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.

Zobrazit více v PubMed

Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 2007;35:D269–70. PubMed PMC

Dryden DT, Murray NE, Rao DN. Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res. 2001;29:3728–3741. PubMed PMC

Barcus VA, Titheradge AJ, Murray NE. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics. 1995;140:1187–1197. PubMed PMC

Titheradge AJ, King J, Ryu J, Murray NE. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res. 2001;29:4195–4205. PubMed PMC

Fuller-Pace FV, Cowan GM, Murray NE. EcoA and EcoE: alternatives to the EcoK family of type I restriction and modification systems of Escherichia coli. J Mol Biol. 1985;186:65–75. PubMed

Chin V, Valinluck V, Magaki S, Ryu J. KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system. Nucl Acids Res. 2004;32:e138. PubMed PMC

Raleigh EA. Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol. 1992;6:1079–1086. PubMed

Sibley MH, Raleigh EA. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives. Nucleic Acids Res. 2004;32:522–534. PubMed PMC

Lodinova R, Jouja V, Lanc A. Influence of the intestinal flora on the development of immune reactions in infants. J Bacteriol. 1967;93:797–800. PubMed PMC

Lodinova R, Hanikova M, Jouja V. Some cellular immune reactions in infants. MIF, E-rosette formation and changes in nucleolar morphology. Folia Microbiol (Praha) 1980;25:74–80. PubMed

Hejnova J, Dobrindt U, Nemcova R, Rusniok C, Bomba A, Frangeul L, Hacker J, Glaser P, Sebo P, Buchrieser C. Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) Microbiology. 2005;151:385–398. PubMed

Ellrott KP, Kasarjian JK, Jiang T, Ryu J. Restriction enzyme recognition sequence search program. Biotechniques. 2002;33:1322–1326. PubMed

Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:529–533. PubMed

Welch RA, Burland V, Plunkett G, III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, Blattner FR. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli 10.1073/pnas.252529799. PNAS. 2002;99:17020–17024. PubMed PMC

Sharp PM, Kelleher JE, Daniel AS, Cowan GM, Murray NE. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci U S A. 1992;89:9836–9840. PubMed PMC

Titheradge AJ, Ternent D, Murray NE. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA [published erratum appears in Mol Microbiol 1997 Feb;23(4):851] Mol Microbiol. 1996;22:437–447. PubMed

Kannan P, Cowan GM, Daniel AS, Gann AA, Murray NE. Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J Mol Biol. 1989;209:335–344. PubMed

Cowan GM, Daniel AS, Gann AA, Kelleher JE, Murray NE. Defining domains in type-I restriction and modification enzymes. Gene. 1988;74:239–241. PubMed

Schouler C, Gautier M, Ehrlich SD, Chopin MC. Combinational variation of restriction modification specificities in Lactococcus lactis doi:10.1046/j.1365-2958.1998.00787.x. Molecular Microbiology. 1998;28:169–178. PubMed

Hubacek J, Weiserova M. DNA restriction and modification in Escherichia coli: functional analysis of the role of the dnaC(D) gene product. J Gen Microbiol. 1980;119:231–238. PubMed

Murray NE, Gough JA, Suri B, Bickle TA. Structural homologies among type I restriction-modification systems. Embo J. 1982;1:535–539. PubMed PMC

Kasarjian JKA, Iida M, Ryu J. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method. Nucl Acids Res. 2003;31:e22. PubMed PMC

Murray NE. Special uses of lambda phage for molecular cloning. Methods Enzymol. 1991;204:280–301. PubMed

Thomson JM, Parrott WA. pMECA: a cloning plasmid with 44 unique restriction sites that allows selection of recombinants based on colony size. Biotechniques. 1998;24:922–4, 926, 928. PubMed

Kasarjian JKA, Kodama Y, Iida M, Matsuda K, Ryu J. Four new type I restriction enzymes identified in Escherichia coli clinical isolates 10.1093/nar/gni114. Nucl Acids Res. 2005;33:e114. PubMed PMC

Hochhut B, Wilde C, Balling G, Middendorf B, Dobrindt U, Brzuszkiewicz E, Gottschalk G, Carniel E, Hacker J. Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536 doi:10.1111/j.1365-2958.2006.05255.x. Molecular Microbiology. 2006;61:584–595. PubMed

Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol. 2004;186:595–600. PubMed PMC

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Manual. 2nd. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press; 1989.

Weiserova M, Janscak P, Zinkevich V, Hubacek J. Overproduction of the Hsd subunits leads to the loss of temperature-sensitive restriction and modification phenotype. Folia Microbiol (Praha) 1994;39:452–458. PubMed

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed

Holubova II, Vejsadova S, Firman K, Weiserova M. Cellular localization of Type I restriction-modification enzymes is family dependent. Biochem Biophys Res Commun. 2004;319:375–380. PubMed

Kasarjian JKA, Hidaka M, Horiuchi T, Iida M, Ryu J. The recognition and modification sites for the bacterial type I restriction systems KpnAI, StySEAI, StySENI and StySGI. Nucl Acids Res. 2004;32:e82. PubMed PMC

Kong H, Lin LF, Porter N, Stickel S, Byrd D, Posfai J, Roberts RJ. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res. 2000;28:3216–3223. PubMed PMC

Thorpe PH, Ternent D, Murray NE. The specificity of sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res. 1997;25:1694–1700. PubMed PMC

Loenen WA, Daniel AS, Braymer HD, Murray NE. Organization and sequence of the hsd genes of Escherichia coli K-12. J Mol Biol. 1987;198:159–170. PubMed

Yokoyama K, Makino K, Kubota Y, Watanabe M, Kimura S, Yutsudo CH, Kurokawa K, Ishii K, Hattori M, Tatsuno I, Abe H, Yoh M, Iida T, Ohnishi M, Hayashi T, Yasunaga T, Honda T, Sasakawa C, Shinagawa H. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak. Gene. 2000;258:127–139. PubMed

Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189:113–130. PubMed

Buchrieser C, Rusniok C, Frangeul L, Couve E, Billault A, Kunst F, Carniel E, Glaser P. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun. 1999;67:4851–4861. PubMed PMC

Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. PubMed

Janscak P, Bickle TA. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain. J Mol Biol. 1998;284:937–948. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

General and molecular microbiology and microbial genetics in the IM CAS

. 2010 Dec ; 37 (12) : 1227-39. [epub] 20101118

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace