Overproduction of the Hsd subunits leads to the loss of temperature-sensitive restriction and modification phenotype
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
8549991
DOI
10.1007/bf02814061
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny genetika MeSH
- bakteriální transformace MeSH
- Escherichia coli enzymologie genetika MeSH
- fenotyp MeSH
- místně specifická DNA-methyltransferasa (adenin-specifická) biosyntéza genetika fyziologie MeSH
- mutace MeSH
- plazmidy analýza genetika MeSH
- restrikční enzymy biosyntéza genetika fyziologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA modification methylase EcoKI MeSH Prohlížeč
- endodeoxyribonuclease EcoKI MeSH Prohlížeč
- místně specifická DNA-methyltransferasa (adenin-specifická) MeSH
- restrikční enzymy MeSH
The genes hsdM and hsdS for M. EcoKI modification methyltransferase and the complete set of hsdR, hsdM and hsdS genes coding for R. EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation in hsdS gene, were cloned in pBR322 plasmid and introduced into E. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. The hsdSts-1 mutation, mapped previously in the distal variable region of the hsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42 degrees C. In clones transformed with the whole hsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutant hsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of the hsdSts-1 mutation on restriction and modification.
Zobrazit více v PubMed
J Mol Biol. 1970 May 28;50(1):111-27 PubMed
J Biol Chem. 1972 Oct 10;247(19):6176-82 PubMed
Nucleic Acids Res. 1993 Feb 11;21(3):373-9 PubMed
Genetics. 1954 Jul;39(4):440-52 PubMed
Mol Gen Genet. 1980;180(1):35-46 PubMed
Methods Enzymol. 1991;204:280-301 PubMed
Ann Inst Pasteur (Paris). 1954 Dec;87(6):653-73 PubMed
J Mol Biol. 1969 May 14;41(3):459-72 PubMed
J Bacteriol. 1953 Feb;65(2):113-21 PubMed
Microbiol Rev. 1990 Jun;54(2):130-97 PubMed
J Bacteriol. 1964 Dec;88:1652-60 PubMed
Mol Gen Genet. 1993 Dec;241(5-6):491-6 PubMed
Genetics. 1965 Nov;52(5):1043-50 PubMed
Annu Rev Genet. 1991;25:585-627 PubMed
J Bacteriol. 1993 Aug;175(15):4905-6 PubMed
J Gen Microbiol. 1989 Nov;135(11):3057-65 PubMed
Gene. 1977;2(2):95-113 PubMed
Annu Rev Biochem. 1981;50:285-319 PubMed
J Bacteriol. 1991 Oct;173(20):6568-77 PubMed
Gene. 1990 May 31;90(1):125-8 PubMed
Dokl Akad Nauk SSSR. 1981;259(1):216-8 PubMed
Genet Res. 1970 Apr;15(2):237-50 PubMed
Genet Res. 1969 Apr;13(2):227-40 PubMed
Dokl Akad Nauk SSSR. 1984;279(6):1493-6 PubMed
J Gen Microbiol. 1980 Jul;119(1):231-8 PubMed
J Mol Biol. 1985 Nov 5;186(1):65-75 PubMed
Microbiol Rev. 1993 Jun;57(2):434-50 PubMed
EMBO J. 1984 Mar;3(3):575-9 PubMed
J Gen Microbiol. 1973 Dec;79(2):257-64 PubMed