Sequential analysis of biomarkers in cerebrospinal fluid and serum during invasive meningococcal disease
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19205764
PubMed Central
PMC2693780
DOI
10.1007/s10096-009-0708-6
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky terapeutické užití MeSH
- biologické markery MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mediátory zánětu analýza MeSH
- meningokokové infekce farmakoterapie mikrobiologie patologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozkomíšní mok chemie MeSH
- sérum chemie MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- biologické markery MeSH
- mediátory zánětu MeSH
The aim of the present study was to determine the profile of different inflammatory molecules in serum and cerebrospinal fluid (CSF) during invasive meningococcal disease (IMD). Their relationship with IMD severity was also assessed. A cohort of 12 patients with IMD was investigated. Paired serum and CSF samples were obtained at the time of diagnostic and follow-up lumbar puncture and were examined using Luminex analysis. IMD severity correlated with serum interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1 ra) on admission. Furthermore, the CSF levels of IL-1 beta, IL-1 ra, IL-6, IL-8, macrophage inflammatory protein-1 beta (MIP-1 beta), and monocyte chemoattractant protein-1 (MCP-1) were significantly higher than their respective serum levels. The strongest correlations were found between serum concentrations of IL-1 beta and IL-1 ra, IL-6, IL-8, and MIP-1 beta, whereas the strongest correlations in CSF were found between endotoxin and IL-8, IL-17, MIP-1 beta, and MCP-1. As was expected, the concentrations of inflammatory molecules in both serum and CSF significantly decreased after antibiotic treatment. With regard to kinetics, a severe course of IMD correlated positively with rapid declines of CSF IL-6 and cortisol levels. Sequential multiple analyses revealed patterns of inflammatory responses that were associated with the severity of IMD, as well as with the compartmentalization and kinetics of the immune reaction.
Zobrazit více v PubMed
van Deuren M, Brandtzaeg P, van der Meer JWM (2000) Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 13:144–166 PubMed PMC
None PubMed
van Deuren M, van der Ven-Jongekrijg J, Vannier E, van Dalen R, Pesman G, Bartelink AK, Dinarello CA, van der Meer JW (1997) The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type II in acute meningococcal infections. Blood 90:1101–1108 PubMed
Lehner PJ, Davies KA, Walport MJ, Cope AP, Würzner R, Orren A, Morgan BP, Cohen J (1992) Meningococcal septicaemia in a C6-deficient patient and effects of plasma transfusion on lipopolysaccharide release. Lancet 340:1379–1381. doi:10.1016/0140-6736(92)92561-S PubMed
None PubMed
Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB, Kierulf P (2001) Neisseria meningitidis lipopolysaccharides in human pathology. J Endotoxin Res 7:401–420 PubMed
Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555. doi:10.1007/s00134-004-2210-z PubMed
Derkx B, Wittes J, McCloskey R (1999) Randomized, placebo-controlled trial of HA-1A, a human monoclonal antibody to endotoxin, in children with meningococcal septic shock. European Pediatric Meningococcal Septic Shock Trial Study Group. Clin Infect Dis 28:770–777. doi:10.1086/515184 PubMed
Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD, Yeh T, Kim SS, Cafaro DP, Scannon PJ, Giroir BP (2000) Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 356:961–967. doi:10.1016/S0140-6736(00)02712-4 PubMed
Goldstein B, Nadel S, Peters M, Barton R, Machado F, Levy H, Haney DJ, Utterback B, Williams MD, Giroir BP (2006) ENHANCE: results of a global open-label trial of drotrecogin alfa (activated) in children with severe sepsis. Pediatr Crit Care Med 7:200–211. doi:10.1097/01.PCC.0000217470.68764.36 PubMed
Taha MK, Alonso JM, Cafferkey M, Caugant DA, Clarke SC, Diggle MA, Fox A, Frosch M, Gray SJ, Guiver M, Heuberger S, Kalmusová J, Kesanopoulos K, Klem AM, Kriz P, Marsh J, Mölling P, Murphy K, Olcén P, Sanou O, Tzanakaki G, Vogel U (2005) Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis. J Clin Microbiol 43:144–149. doi:10.1128/JCM.43.1.144-149.2005 PubMed PMC
Russell JE, Jolley KA, Feavers IM, Maiden MC, Suker J (2004) PorA variable regions of Neisseria meningitidis. Emerg Infect Dis 10:674–678 PubMed PMC
Mölling P, Unemo M, Bäckman A, Olcén P (2000) Genosubtyping by sequencing group A, B and C meningococci; a tool for epidemiological studies of epidemics, clusters and sporadic cases. APMIS 108:509–516. doi:10.1034/j.1600-0463.2000.d01-90.x PubMed
Thompson EA, Feavers IM, Maiden MC (2003) Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology 149:1849–1858. doi:10.1099/mic.0.26131-0 PubMed
None
Kasal E, Roznovsky L, Krízová P, Dzupová O, Dostal V, Struncova V, Chytra I, Barnetova D, Habanec T, Plisek S, Chalupa P (2005) Therapeutic protocol of invasive meningococcal disease (IMD). Prakt Lek 85:196–199
Waage A, Halstensen A, Espevik T, Brandtzæg P (1993) Compartmentalization of TNF and IL-6 in meningitis and septic shock. Mediators Inflamm 2:23–25. doi:10.1155/S096293519300002X PubMed PMC
Holub M, Beran O, Dzupová O, Hnyková J, Lacinová Z, Príhodová J, Procházka B, Helcl M (2007) Cortisol levels in cerebrospinal fluid correlate with severity and bacterial origin of meningitis. Crit Care 11:R41. doi:10.1186/cc5729 PubMed PMC
Kleine TO, Zwerenz P, Zöfel P, Shiratori K (2003) New and old diagnostic markers of meningitis in cerebrospinal fluid (CSF). Brain Res Bull 61:287–297. doi:10.1016/S0361-9230(03)00092-3 PubMed
Herzum I, Renz H (2008) Inflammatory markers in SIRS, sepsis and septic shock. Curr Med Chem 15:581–587. doi:10.2174/092986708783769704 PubMed
None PubMed
Brandtzaeg P, Ovstebøo R, Kierulf P (1992) Compartmentalization of lipopolysaccharide production correlates with clinical presentation in meningococcal disease. J Infect Dis 166:650–652 PubMed
Møller AS, Bjerre A, Brusletto B, Joø GB, Brandtzaeg P, Kierulf P (2005) Chemokine patterns in meningococcal disease. J Infect Dis 191:768–775. doi:10.1086/427514 PubMed
Sterka D Jr, Rati DM, Marriott I (2006) Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53:322–330. doi:10.1002/glia.20286 PubMed
None
Cavaillon JM (2003) Proinflammatory and anti-inflammatory cytokines as mediators of Gram-negative sepsis. In: Kotb M, Calandra T (eds) Cytokines and chemokines in infectious diseases handbook, 1st edn. Humana Press Inc., Totowa, New Jersey, pp 33–37
Hackett SJ, Guiver M, Marsh J, Sills JA, Thomson AP, Kaczmarski EB, Hart CA (2002) Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch Dis Child 86:44–46. doi:10.1136/adc.86.1.44 PubMed PMC
Elsbach P (1998) Recent advances in therapy of sepsis: focus on recombinant bactericidal/permeability-increasing protein (BPI). BioDrugs 9:435–442. doi:10.2165/00063030-199809060-00001 PubMed
None PubMed
Dehoux MS, Boutten A, Ostinelli J, Seta N, Dombret MC, Crestani B, Deschenes M, Trouillet JL, Aubier M (1994) Compartmentalized cytokine production within the human lung in unilateral pneumonia. Am J Respir Crit Care Med 150:710–716 PubMed
None PubMed
Munford RS, Pugin J (2001) Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 163:316–321 PubMed
Wen LL, Chiu CT, Huang YN, Chang CF, Wang JY (2007) Rapid glia expression and release of proinflammatory cytokines in experimental Klebsiella pneumoniae meningoencephalitis. Exp Neurol 205:270–278. doi:10.1016/j.expneurol.2007.02.011 PubMed
Kielian T, Mayes P, Kielian M (2002) Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecule, and Toll-like receptor expression. J Neuroimmunol 130:86–99. doi:10.1016/S0165-5728(02)00216-3 PubMed
Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169:333–338. doi:10.1084/jem.169.1.333 PubMed PMC
Holub M, Scheinostová M, Dzupová O, Fiserová A, Beran O, Kalmusová J, Musilek M, Krízová P (2007) Neisseria meningitidis strains from patients with invasive meningococcal disease differ in stimulation of cytokine production. Folia Microbiol (Praha) 52:525–528. doi:10.1007/BF02932114 PubMed
None PubMed
Rusconi F, Parizzi F, Garlaschi L, Assael BM, Sironi M, Ghezzi P, Mantovani A (1991) Interleukin 6 activity in infants and children with bacterial meningitis. The Collaborative Study on Meningitis. Pediatr Infect Dis J 10:117–121. doi:10.1097/00006454-199102000-00008 PubMed
Cytokines and chemokines as biomarkers of community-acquired bacterial infection