Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus)
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Genetic Variation * MeSH
- Histocompatibility Antigens Class I genetics MeSH
- Animal Migration MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Passeriformes classification genetics immunology MeSH
- Polymorphism, Single-Stranded Conformational MeSH
- Genetics, Population MeSH
- Recombination, Genetic MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Homology, Amino Acid MeSH
- Sequence Homology, Nucleic Acid MeSH
- Linkage Disequilibrium MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histocompatibility Antigens Class I MeSH
Although the number of studies focusing on the major histocompatibility complex (MHC) in non-model vertebrates is increasing, results are often contradictory, and the structure of MHC is still poorly understood in wild species. Here, we describe the structure and diversity of exon 3 of MHC class I in a passerine bird, the Scarlet Rosefinch (Carpodacus erythrinus). Using capillary electrophoresis single-strand conformation polymorphism, we identified 82 different MHC class I variants in one Rosefinch population nesting at one site in the Czech Republic. Thus far, this is the highest intra-populational MHC class I variation observed in birds. We have not found support for 'minimal essential' MHC in this species since individuals exhibited between three and nine different exon 3 sequences, indicating that there may be at least five amplified MHC class I genes. By cloning, we obtained and analysed 29 exon sequences and found that all of them could be translated into potentially functional proteins. We also show that strong positive selection appears to be acting mainly, but not only, on previously described antigen-binding sites in MHC class I genes. Furthermore, our results indicate that recombination has played an important role in generating genetic diversity of these genes in the Scarlet Rosefinch; we discuss the significance of this extremely high genetic diversity in light of the life history traits of this species, such as long-distance migration.
See more in PubMed
Ecol Lett. 2008 Mar;11(3):258-65 PubMed
Genetics. 2006 Mar;172(3):1411-25 PubMed
J Mol Evol. 2007 Nov;65(5):541-54 PubMed
Proc Biol Sci. 2005 Jul 22;272(1571):1511-8 PubMed
Genetics. 2003 Jul;164(3):1229-36 PubMed
Immunol Rev. 1999 Feb;167:101-17 PubMed
Evolution. 2006 Feb;60(2):383-9 PubMed
Nature. 1987 Oct 8-14;329(6139):506-12 PubMed
Mol Biol Evol. 1999 Apr;16(4):479-90 PubMed
Proc Biol Sci. 2006 May 7;273(1590):1111-6 PubMed
Immunogenetics. 2004 Sep;56(6):427-37 PubMed
Annu Rev Genet. 1998;32:415-35 PubMed
Immunogenetics. 2008 May;60(5):219-31 PubMed
Immunogenetics. 2000 Nov;52(1-2):92-100 PubMed
Semin Immunol. 1994 Dec;6(6):411-24 PubMed
Genetica. 1998-1999;104(3):301-9 PubMed
Heredity (Edinb). 2006 Aug;97(2):111-8 PubMed
Immunogenetics. 2008 Sep;60(9):543-50 PubMed
Hum Immunol. 2001 May;62(5):504-8 PubMed
Proc Biol Sci. 2005 Apr 7;272(1564):759-67 PubMed
Mol Ecol. 2003 Dec;12(12):3523-9 PubMed
Mol Biol Evol. 2005 May;22(5):1208-22 PubMed
J Hered. 1999 Jan-Feb;90(1):152-9 PubMed
Heredity (Edinb). 2004 Jun;92(6):534-42 PubMed
Genome Res. 2000 May;10(5):613-23 PubMed
Immunogenetics. 2004 Mar;55(12):855-65 PubMed
Mol Biol Evol. 2006 Oct;23(10):1891-901 PubMed
J Mol Evol. 2007 Jul;65(1):34-43 PubMed
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12200-4 PubMed
BMC Genomics. 2006 Dec 21;7:322 PubMed
Immunogenetics. 2004 Jun;56(3):192-203 PubMed
Immunogenetics. 1999 Mar;49(3):158-70 PubMed
Genetics. 1997 Jun;146(2):655-68 PubMed
Mol Ecol. 2002 Jun;11(6):1125-30 PubMed
Proc Natl Acad Sci U S A. 1994 May 10;91(10):4397-401 PubMed
Mol Biol Evol. 2005 Apr;22(4):1107-18 PubMed
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1434-9 PubMed
Immunogenetics. 2004 Jun;56(3):178-91 PubMed
J Immunol. 2007 May 1;178(9):5744-52 PubMed
Immunogenetics. 1999 Jun;49(6):479-90 PubMed
Vet Immunol Immunopathol. 2005 Sep 15;107(3-4):291-302 PubMed
J Immunol. 2004 Jun 1;172(11):6751-63 PubMed
Comput Appl Biosci. 1997 Oct;13(5):555-6 PubMed
Immunogenetics. 2007 Sep;59(9):725-34 PubMed
Mol Biol Evol. 2006 May;23(5):949-56 PubMed
J Evol Biol. 2008 Jul;21(4):1144-50 PubMed
Immunogenetics. 2008 May;60(5):233-47 PubMed
Immunogenetics. 1999 Nov;50(3-4):228-36 PubMed
Mol Biol Evol. 1999 Nov;16(11):1599-606 PubMed
Immunol Rev. 1995 Feb;143:63-88 PubMed
Bioinformatics. 2005 Mar 1;21(5):676-9 PubMed
Genes Immun. 2008 Dec;9(8):651-8 PubMed
Mol Biol Evol. 2000 Oct;17(10):1446-55 PubMed
Immunity. 2007 Dec;27(6):885-99 PubMed
GENBANK
FJ392762, FJ392763, FJ392764, FJ392765, FJ392766, FJ392767, FJ392768, FJ392769, FJ392770, FJ392771, FJ392772, FJ392773, FJ392774, FJ392775, FJ392776, FJ392777, FJ392778, FJ392779, FJ392780, FJ392781, FJ392782, FJ392783, FJ392784, FJ392785, FJ392786, FJ392787, FJ392788, FJ392789, FJ392790