Ion specificity at the peptide bond: molecular dynamics simulations of N-methylacetamide in aqueous salt solutions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
20038160
DOI
10.1021/jp910953w
Knihovny.cz E-zdroje
- MeSH
- acetamidy chemie MeSH
- ionty chemie MeSH
- peptidy chemie MeSH
- roztoky chemie MeSH
- simulace molekulární dynamiky MeSH
- soli chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- acetamidy MeSH
- ionty MeSH
- N-methylacetamide MeSH Prohlížeč
- peptidy MeSH
- roztoky MeSH
- soli MeSH
- voda MeSH
Affinities of alkali cations and halide anions for the peptide group were quantified using molecular dynamics simulations of aqueous solutions of N-methylacetamide using both nonpolarizable and polarizable force fields. Potassium and, more strongly, sodium exhibit an affinity for the carbonyl oxygen of the amide group, while none of the halide anions shows any appreciable attraction for the amide hydrogen. Heavier halides, however, interact with the hydrophobic methyl groups of N-methylacetamide. Using the present results for a model of the peptide bond we predict that the destabilizing effect of weakly hydrated Hofmeister ions, such as bromide or iodide, is not due to direct interactions with the backbone but rather due to attraction to hydrophobic regions of the protein.
Citace poskytuje Crossref.org
Anion-cation contrast of small molecule solvation in salt solutions
Weakly hydrated anions bind to polymers but not monomers in aqueous solutions