Study on surface properties of PDMS microfluidic chips treated with albumin

. 2009 Oct 12 ; 3 (4) : 44101. [epub] 20091012

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid20216963

Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMS surface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmotic mobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy (AFM) analysis of the surface reveals a "peak and ridge" structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMS surface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMS surface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surface electric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings.

Zobrazit více v PubMed

Sia S. K. and Whitesides G. M., Electrophoresis ELCTDN 24, 3563 (2003).10.1002/elps.200305584 PubMed DOI

Ng J. M. K., Gitlin I., Stroock A. D., and Whitesides G. M., Electrophoresis ELCTDN 23, 3461 (2002).10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 PubMed DOI

Fujii T., Microelectron. Eng. MIENEF 61–62, 907 (2002).10.1016/S0167-9317(02)00494-X DOI

Edwards J. M., Hamblin M. N., Fuentes H. V., Peeni B. A., Lee M. L., Woolley A. T., and Hawkins A. R., Biomicrofluidics BIOMGB 1, 014101 (2007).10.1063/1.2372215 PubMed DOI PMC

Ohshima H. and Furusawa K. (Marcel Dekker, New York, 1998).

Almutairi Z. A., Glawdel T., Ren C. L., and Johnson D. A., International Mechanical Engineering Congress and Exposition 2007, Vol 11 Pt a and Pt B: Micro and Nano Systems 893 (2008).

Choi H., Lee K. B., Yoon K. R., Choi I. S., Woo S. I., Choi K., Lee S. C., and Kim Y., Bull. Korean Chem. Soc. BKCSDE 25, 560 (2004).

Dasgupta S., Bhagat A. A. S., Horner M., Papautsky I., and Banerjee R. K., Microfluidics and Nanofluidics 5, 185 (2008).10.1007/s10404-007-0236-6 DOI

Ren X. Q., Bachman M., Sims C., Li G. P., and Allbritton N., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 762, 117 (2001).10.1016/S0378-4347(01)00327-9 PubMed DOI

Shadpour H., Musyimi H., Chen J. F., and Soper S. A., J. Chromatogr. A ZZZZZZ 1111, 238 (2006).10.1016/j.chroma.2005.08.083 PubMed DOI

Spehar A. M., Koster S., Linder V., Kulmala S., de Rooij N. F., Verpoorte E., Sigrist H., and Thormann W., Electrophoresis ELCTDN 24, 3674 (2003).10.1002/elps.200305624 PubMed DOI

Sze A., Erickson D., Ren L. Q., and Li D. Q., J. Colloid Interface Sci. JCISA5 261, 402 (2003).10.1016/S0021-9797(03)00142-5 PubMed DOI

Venditti R., Xuan X. C., and Li D. Q., Microfluidics and Nanofluidics 2, 493 (2006).10.1007/s10404-006-0100-0 DOI

Bao N., Xu J. J., Zhang Q., Hang J. L., and Chen H. Y., J. Chromatogr. A ZZZZZZ 1099, 203 (2005).10.1016/j.chroma.2005.11.004 PubMed DOI

Vickers J. A., Caulum M. M., and Henry C. S., Anal. Chem. ANCHAM 78, 7446 (2006).10.1021/ac0609632 PubMed DOI

Ross D., Johnson T. J., and Locascio L. E., Anal. Chem. ANCHAM 73, 2509 (2001).10.1021/ac001509f PubMed DOI

Ross D. and Locascio L. E., Anal. Chem. ANCHAM 75, 1218 (2003).10.1021/ac026277u PubMed DOI

Devasenathipathy S., Santiago J. G., and Takehara K., Anal. Chem. ANCHAM 74, 3704 (2002).10.1021/ac011243s PubMed DOI

Luo Y. Q., Huang B., Wu H., and Zare R. N., Anal. Chem. ANCHAM 78, 4588 (2006).10.1021/ac052274g PubMed DOI

Roman G. T., Hlaus T., Bass K. J., Seelhammer T. G., and Culbertson C. T., Anal. Chem. ANCHAM 77, 1414 (2005).10.1021/ac048811z PubMed DOI

Kirby B. J. and Hasselbrink E. F., Electrophoresis ELCTDN 25, 187 (2004).10.1002/elps.200305754 PubMed DOI

Zhou F., Wang W., Wu W. Y., Zhang J. R., and Zhu J. J., J. Chromatogr. A ZZZZZZ 1194, 221 (2008).10.1016/j.chroma.2008.03.085 PubMed DOI

Huang X. H., Gordon M. J., and Zare R. N., Anal. Chem. ANCHAM 60, 1837 (1988).10.1021/ac00168a040 PubMed DOI

Schrott W., Pribyl M., Stepanek J., and Snita D., Microelectron. Eng. MIENEF 85, 1100 (2008).10.1016/j.mee.2008.01.062 DOI

Sagvolden G., Giaever I., and Feder J., Langmuir LANGD5 14, 5984 (1998).10.1021/la980271b DOI

Probstein R. F., Physicochemical hydrodynamics: An Introduction, 2nd ed. (Wiley and Sons, New York, 1994).

Postler T., Slouka Z., Svoboda M., Pribyl M., and Snita D., J. Colloid Interface Sci. JCISA5 320, 321 (2008).10.1016/j.jcis.2007.10.056 PubMed DOI

Slouka Z., Pribyl M., Snita D., and Postler T., Phys. Chem. Chem. Phys. PPCPFQ 9, 5374 (2007).10.1039/b707197c PubMed DOI

Deen W. M., Analysis of Transport Phenomena (Oxford University Press, New York, 1998).

Chang S. H., Biomicrofluidics BIOMGB 3, 012802 (2009).10.1063/1.3064113 DOI

Browne M. M., Lubarsky G. V., Davidson M. R., and Bradley R. H., Surf. Sci. SUSCAS 553, 155 (2004).10.1016/j.susc.2004.01.046 DOI

Puskas J. E., Dahman Y., and Margaritis A., Biomacromolecules BOMAF6 5, 1412 (2004).10.1021/bm034497r PubMed DOI

Tencer M., Charbonneau R., Lahoud N., and Berini P., Appl. Surf. Sci. ASUSEE 253, 9209 (2007).10.1016/j.apsusc.2007.05.079 DOI

Huang Y. W. and Gupta V. K., J. Chem. Phys. JCPSA6 121, 2264 (2004).10.1063/1.1768155 PubMed DOI

Butler J. E., Lu E. P., Navarro P., and Christiansen B., J. Mol. Recognit. JMORE4 10, 36 (1997).10.1002/(SICI)1099-1352(199701/02)10:1<36::AID-JMR353>3.0.CO;2-G PubMed DOI

Bohme U. and Scheler U., Chem. Phys. Lett. CHPLBC 435, 342 (2007).10.1016/j.cplett.2006.12.068 DOI

Gao Y. L., Hu G. Q., Lin F. Y. H., Sherman P. M., and Li D. Q., Biomed. Microdevices ZZZZZZ 7, 301 (2005).10.1007/s10544-005-6072-0 PubMed DOI

Blanch W. B. and Clark D. S., Biochemical Engineering (Marcel Dekker, New York, 1997).

Ocvirk G., Munroe M., Tang T., Oleschuk R., Westra K., and Harrison D. J., Electrophoresis ELCTDN 21, 107 (2000).10.1002/(SICI)1522-2683(20000101)21:1<107::AID-ELPS107>3.0.CO;2-Y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...