Expression of alkaline proteinase gene in two recombinant Bacillus cereus feather-degrading strains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Bacillus cereus enzymologie metabolismus MeSH
- bakteriální proteiny biosyntéza MeSH
- bakteriální transformace MeSH
- endopeptidasy biosyntéza MeSH
- exprese genu * MeSH
- geny hub MeSH
- keratiny metabolismus MeSH
- kultivační média chemie MeSH
- kur domácí MeSH
- nestabilita genomu MeSH
- peří metabolismus MeSH
- plazmidy MeSH
- rekombinantní proteiny biosyntéza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkaline protease MeSH Prohlížeč
- bakteriální proteiny MeSH
- endopeptidasy MeSH
- keratiny MeSH
- kultivační média MeSH
- rekombinantní proteiny MeSH
Two Bacillus cereus feather-degrading strains (23/1 and 6/2) were transformed using a recombinant plasmid p5.2 carrying the alkaline proteinase gene (aprE). A high level of the aprE gene expression was observed when the recombinant strains were grown on sporulation medium. The expression of the aprE gene proceeded during the early stationary phase and the p5.2 plasmid was segregationally and structurally stable in both strains. The two recombinant strains grown on a mineral medium with 1 % chicken feather as source of energy, carbon and nitrogen exhibited higher proteolytic activity ( approximately 6-fold and 2.4-fold higher for strains 23/1 (p5.2) and 6/2 (p5.2), respectively. Keratinolytic activity increased approximately 3.5-fold and 4.15-fold, respectively. The keratinolytic activity further increased when an optimized medium with yeast extract and corn oil was used. Considerable amounts of free amino acids were obtained after the biodegradation of feather which makes the new strains promising for application in feather-waste treatment to, e.g., transformation to animal feedstuff.
Zobrazit více v PubMed
Biotechnol Bioeng. 2004 Aug 20;87(4):459-64 PubMed
Enzyme Microb Technol. 1994 Jun;16(6):534-7 PubMed
Gene. 1991 Jul 15;103(1):107-11 PubMed
Enzyme Microb Technol. 1990 May;12(5):330-6 PubMed
J Appl Microbiol. 2000 Nov;89(5):735-43 PubMed
Lett Appl Microbiol. 2008 Mar;46(3):389-94 PubMed
J Biol Chem. 1971 May 25;246(10):3189-95 PubMed
Microb Ecol. 2003 Mar;45(3):282-90 PubMed
J Bacteriol. 1985 Nov;164(2):550-5 PubMed
J Bacteriol. 1991 Feb;173(3):1353-6 PubMed
Appl Environ Microbiol. 1990 Jun;56(6):1509-15 PubMed
Bioresour Technol. 2003 Feb;86(3):239-43 PubMed
Appl Biochem Biotechnol. 1998 Spring;70-72:207-13 PubMed
Plasmid. 1985 Nov;14(3):235-44 PubMed
Appl Environ Microbiol. 1997 Feb;63(2):790-2 PubMed
J Ind Microbiol Biotechnol. 1997 Aug;19(2):134-8 PubMed
Biotechnol Appl Biochem. 2004 Oct;40(Pt 2):191-6 PubMed
J Bacteriol. 1978 Feb;133(2):897-903 PubMed
J Ind Microbiol Biotechnol. 1999 Aug;23(2):149-153 PubMed
Mol Gen Genet. 1987 Apr;207(1):114-9 PubMed