Interaction between alpha(1)- and alpha(2)-adrenoreceptors contributes to enhanced constrictor effects of norepinephrine in mesenteric veins compared to arteries

. 2010 Sep 25 ; 643 (2-3) : 239-46. [epub] 20100621

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20599923

Grantová podpora
F31 HL072732 NHLBI NIH HHS - United States
P01 HL070687 NHLBI NIH HHS - United States
P01 HL070687-065249 NHLBI NIH HHS - United States
HL70687 NHLBI NIH HHS - United States

Odkazy

PubMed 20599923
PubMed Central PMC2925517
DOI 10.1016/j.ejphar.2010.06.021
PII: S0014-2999(10)00591-1
Knihovny.cz E-zdroje

Mesenteric veins are more sensitive than arteries to the constrictor effects of sympathetic nerve stimulation and alpha-adrenoceptor agonists. We tested the hypothesis that alpha(1)- and alpha(2)-adrenoceptors interact to enhance adrenergic reactivity of mesenteric veins. We studied neurogenic and agonist-induced constrictions of mesenteric veins and arteries in vitro. Norepinephrine concentration-response curves were left-shifted in veins compared to arteries. UK 14,304 (0.01-1 microM, alpha(2)-adrenoceptor receptor agonist) did not constrict arteries or veins but enhanced constrictions and Ca(2+) signals mediated by alpha(1)-adrenoceptor stimulation in veins. Yohimbine (alpha(2)-adrenoceptor receptor antagonist) and MK912 (alpha(2C)-adrenoceptor receptor antagonist), but not alpha(2A)- or alpha(2B)-adrenoceptor antagonists, produced rightward shifts in norepinephrine concentration-response curves in veins. Pharmacological studies revealed that alpha(1D)-adrenoceptors mediate venous constrictions. Norepinephrine responses in veins from alpha(2C)-adrenoceptor knock-out (KO) mice were not different from wild type veins. Yohimbine inhibited norepinephrine constrictions in alpha(2C)-adrenoceptor KO veins suggesting that there is upregulation of other alpha(2)-adrenoceptors in alpha(2C)-KO mice. These data indicate that alpha(1D)- and alpha(2C)-adrenoceptors interact in veins but not in arteries. This interaction enhances venous adrenergic reactivity. Mesenteric vein-specific alpha(2)-adrenoceptor linked Ca(2+) and perhaps other signaling pathways account for enhanced venous adrenergic reactivity.

Zobrazit více v PubMed

Aburto TK, Lajoie C, Morgan KG. Mechanisms of signal transduction during alpha2-adrenergic receptor-mediated contraction of vascular smooth muscle. Circ Res. 1993;72:778–785. PubMed

Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177–183. PubMed

Blue DR, Jr, Bonhaus DW, Ford AP, Pfister JR, Sharif NA, Shieh IA, Vimont RL, Williams TJ, Clarke DE. Functional evidence equating the pharmacologically-defined alpha 1A- and cloned alpha 1C-adrenoceptor: studies in the isolated perfused kidney of rat. Br J Pharmacol. 1995;115:283–294. PubMed PMC

Burns WR, Cohen KD, Jackson WF. K+-induced dilation of hamster cremasteric arterioles involves both the Na+/K+-ATPase and inward-rectifier K+ channels. Microcirculation. 2004;11:279–293. PubMed PMC

Burt RP, Chapple CR, Marshall I. Evidence for a functional alpha 1A-(alpha 1C-) adrenoceptor mediating contraction of the rat epididymal vas deferens and an alpha 1B-adrenoceptor mediating contraction of the rat spleen. Br J Pharmacol. 1995;115:467–475. PubMed PMC

Crowley CM, Lee CH, Gin SA, Keep AM, Cook RC, Van Breemen C. The mechanism of excitation-contraction coupling in phenylephrine-stimulated human saphenous vein. Am J Physiol. 2002;283:H1271–1281. PubMed

Daniel EE, Low AM. Characterization of alpha-adrenoceptors in canine mesenteric vein. J Cardiovasc Pharmacol. 1997;30:591–598. PubMed

Deighan C, Methven L, Naghadeh MM, Wokoma A, Macmillan J, Daly CJ, Tanoue A, Tsujimoto G, McGrath JC. Insights into the functional roles of alpha(1)-adrenoceptor subtypes in mouse carotid arteries using knockout mice. Br J Pharmacol. 2005;144:558–565. PubMed PMC

Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol. 1998;361:1–15. PubMed

Drukteinis JS, Roman MJ, Fabsitz RR, Lee ET, Best LG, Russel M, Devereux RB. Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: the Strong Heart Study. Circulation. 2007;115:221–227. PubMed

Ferrario CM, Page IH, Cubbin JW. Increased cardiac output as a contributory factor in experimental renal hypertension in dogs. Circ Res. 1970;27:799–810. PubMed

Flavahan NA, Rimele TJ, Cooke JP, Vanhouette PM. Characterization of postjunctional α1 and α2 adrenoceptors activated by exogenous or nerve-released norepinephrine in the canine saphenous vein. J Pharmacol Exp Ther. 1984;230:699–705. PubMed

Fink GD. Sympathetic activity, vascular capacitance, and long-term regulation of arterial pressure. Hypertension. 2009;53:307–312. PubMed PMC

Fukui D, Yang XP, Chiba S. Neurogenic double-peaked vasoconstriction of human gastroepiploic artery is mediated by both α1- and α2-adrenoceptors. Br J Pharmacol. 2005;144:737–742. PubMed PMC

Gavin KT, Colgan MP, Moore D, Shanik G, Docherty JR. Alpha2C-adrenoceptors mediate contractile responses to noradrenaline in the human saphenous vein. Naunyn Schmiedeberg’s Arch Pharmacol. 1997;355:406–411. PubMed

Görnemann T, von Wenckstern H, Kleuser B, Villalón CM, Centurión D, Jähnichen S, Pertz HH. Characterization of the postjunctional alpha 2C-adrenoceptor mediating vasoconstriction to UK14304 in porcine pulmonary veins. Br J Pharmacol. 2007;151:186–194. PubMed PMC

Greenway CV, Lautt WW. Blood volume, the venous system, preload, and cardiac output. Can J Physiol Pharmacol. 1986;64:383–387. PubMed

Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–346. PubMed

Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–129. PubMed

Hague C, Lee SE, Chen Z, Prinster SC, Hall RA. Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol Pharmacol. 2006;69:45–55. PubMed

Hague C, Uberti MA, Chen Z, Hall R, Minneman KP. Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J Biol Chem. 2004;279:15541–15549. PubMed

Haynes JM, Hill SJ. Alpha-adrenoceptor mediated responses of the cauda epididymis of the guinea-pig. Br J Pharmacol. 1996;119:1203–1210. PubMed PMC

Hottenstein OD, Kreulen DL. Comparison of the frequency dependence of venous and arterial responses to sympathetic nerve stimulation in guinea-pigs. J Physiol. 1987;384:153–167. PubMed PMC

Hussain MB, Marshall I. Characterization of alpha1-adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. Br J Pharmacol. 1997;122:849–858. PubMed PMC

Jähnichen S, Eltze M, Pertz HH. Evidence that alpha(1B)-adrenoceptors are involved in noradrenaline-induced contractions of rat tail artery. Eur J Pharmacol. 2004;19(488):157–167. PubMed

Levac BA, O’Dowd BF, George SR. Oligomerization of opioid receptors: generation of novel signaling units. Curr Opin Pharmacol. 2002;2:76–81. PubMed

Link RE, Stevens MS, Kalatunga M, Scheinin M, Barsh GS, Kobilka BK. Targeted inactivation of the gene encoding the mouse alpha 2c-adrenoceptor homolog. Mol Pharmacol. 1995;48:48–55. PubMed

London GM, Safar ME, Safar AL, Simon AC. Blood pressure in the “low-pressure system” and cardiac performance in essential hypertension. J Hypertension. 1985;3:337–342. PubMed

Luo M, Hess MC, Fink GD, Olson LK, Kreulen DL, Galligan JJ. Differential alterations in sympathetic neurotransmission in mesenteric arteries and veins in DOCA-salt hypertensive rats. Auton Neurosci. 2003;104:47–57. PubMed

Marshall I, Burt RP, Green GM, Hussain MB, Chapple CR. Different subtypes of alpha 1A-adrenoceptor mediating contraction of rat epididymal vas deferens, rat hepatic portal vein and human prostate distinguished by the antagonist RS 17053. Br J Pharmacol. 1996;119:407–415. PubMed PMC

Martin DS, Rodrigo MC, Appelt CW. Venous tone in the developmental stages of spontaneous hypertension. Hypertension. 1998;31:139–144. PubMed

Milligan G, Ramsay D, Pascal G, Carrillo JJ. GPCR dimerisation. Life Sci. 2003;74:181–188. PubMed

Milligan G, Canals M, Pediani JD, Ellis J, Lopes-Gimenez JF. The role of GPCR dimerisation/oligomerisation in receptor signaling. Ernst Schering Found Symp Proc. 2006;2:145–161. PubMed

Pang CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90:179–230. PubMed

Park J, Galligan JJ, Fink GD, Swain GM. Differences in sympathetic neuroeffector transmission to rat mesenteric arteries and veins as probed by in vitro continuous amperometry and video imaging. J Physiol. 2007;584:819–834. PubMed PMC

Patane MA, Scott AL, Broten TP, Chang RS, Ransom RW, DiSalvo J, Forray C, Bock MG. 4-Amino-2-[4-[1-(benzyloxycarbonyl)-2(S)-[[(1,1-dimethylethyl) amino]carbonyl]-piperazinyl]-6, 7-dimethoxyquinazoline (L-765,314): a potent and selective alpha1b adrenergic receptor antagonist. J Med Chem. 1998;41:1205–1208. PubMed

Patel P, Bose D, Greenway C. Effects of prazosin and phenoxybenzamine on alpha- and beta-receptor-mediated responses in intestinal resistance and capacitance vessels. J Cardiovasc Pharmacol. 1981;3:1050–1059. PubMed

Perez-Rivera AA, Fink GD, Galligan JJ. Increased reactivity of murine mesenteric veins to adrenergic agonists: functional evidence supporting increased alpha1-adrenoceptor reserve in veins compared with arteries. J Pharmacol Exp Ther. 2004;308:350–357. PubMed

Perez-Rivera AA, Hlavacova A, Rosario-Colon LA, Fink GD, Galligan JJ. Differential contributions of alpha-1 and alpha-2 adrenoceptors to vasoconstriction in mesenteric arteries and veins of normal and hypertensive mice. Vascul Pharmacol. 2007;46:373–382. PubMed PMC

Reynen PH, Martin GR, Eglen RM, MacLennan SJ. Characterization of human recombinant alpha2A-adrenoceptors expressed in Chinese hamster lung cells using intracellular Ca2+ changes: evidence for cross-talk between recombinant alpha2A- and native alpha1-adrenoceptors. Br J Pharmacol. 2000;129:1339–1346. PubMed PMC

Ricksten SE, Yao T, DiBona GF, Thoren P. Renal nerve activity and exaggerated natriuresis in conscious spontaneously hypertensive rats. Acta Physiol Scand. 1981;112:161–167. PubMed

Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem. 1999;274:16701–16708. PubMed

Ruffolo RR. Spare alpha adrenoceptors in the peripheral circulation: excitation-contraction coupling. Fed Proc. 1986;45:2341–2346. PubMed

Smyth L, Bobalova J, Ward SM, Keef KD, Mutafova-Yambolieva VN. Co-transmission from sympathetic vasoconstrictor neurons: differences in guinea-pig mesenteric artery and vein. Auton Neurosci. 2000;86:18–29. PubMed

Trendelenburg AU, Wahl CA, Starke K. Antagonists that differentiate between alpha 2A-and alpha 2D-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1996;353:245–249. PubMed

Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther. 2005;313:16–23. PubMed

Werry TD, Wilkinson GF, Willars GB. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+ Biochem J. 2003;374:281–296. PubMed PMC

Wikberg-Matsson A, Simonsen U. Potent alpha2A-adrenoceptor-mediated vasoconstriction by brimonidine in porcine ciliary arteries. Invest Ophthalmol Vis Sci. 2001;42:2049–2055. PubMed

Wilson KM, Minneman KP. Synergistic interactions between alpha 1- and alpha 2-adrenergic receptors in activating 3H-inositol phosphate formation in primary glial cell cultures. J Neurochem. 1991;56:953–960. PubMed

Zacharia J, Hillier C, Tanoue A, Tsujimoto G, Daly CJ, McGrath JC, MacDonald A. Evidence for involvement of alpha1D-adrenoceptors in contraction of femoral resistance arteries using knockout mice. Br J Pharmacol. 2005;146:942–951. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...