Recognition of transcription termination signal by the nuclear polyadenylated RNA-binding (NAB) 3 protein
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
084316
Wellcome Trust - United Kingdom
Howard Hughes Medical Institute - United States
084316/Z/07/Z
Wellcome Trust - United Kingdom
PubMed
21084293
PubMed Central
PMC3030368
DOI
10.1074/jbc.m110.158774
PII: S0021-9258(20)54068-4
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce * MeSH
- jaderné proteiny chemie genetika metabolismus MeSH
- konformace proteinů MeSH
- magnetická rezonanční spektroskopie MeSH
- multimerizace proteinu MeSH
- oligonukleotidy chemie metabolismus MeSH
- proteiny vázající RNA chemie genetika metabolismus MeSH
- roztoky MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvence nukleotidů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
- NAB3 protein, S cerevisiae MeSH Prohlížeč
- NRD1 protein, S cerevisiae MeSH Prohlížeč
- oligonukleotidy MeSH
- proteiny vázající RNA MeSH
- roztoky MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Non-coding RNA polymerase II transcripts are processed by the poly(A)-independent termination pathway that requires the Nrd1 complex. The Nrd1 complex includes two RNA-binding proteins, the nuclear polyadenylated RNA-binding (Nab) 3 and the nuclear pre-mRNA down-regulation (Nrd) 1 that bind their specific termination elements. Here we report the solution structure of the RNA-recognition motif (RRM) of Nab3 in complex with a UCUU oligonucleotide, representing the Nab3 termination element. The structure shows that the first three nucleotides of UCUU are accommodated on the β-sheet surface of Nab3 RRM, but reveals a sequence-specific recognition only for the central cytidine and uridine. The specific contacts we identified are important for binding affinity in vitro as well as for yeast viability. Furthermore, we show that both RNA-binding motifs of Nab3 and Nrd1 alone bind their termination elements with a weak affinity. Interestingly, when Nab3 and Nrd1 form a heterodimer, the affinity to RNA is significantly increased due to the cooperative binding. These findings are in accordance with the model of their function in the poly(A) independent termination, in which binding to the combined and/or repetitive termination elements elicits efficient termination.
Zobrazit více v PubMed
Richard P., Manley J. L. (2009) Genes Dev. 23, 1247–1269 PubMed PMC
Bentley D. (2002) Curr. Opin. Cell Biol. 14, 336–342 PubMed
Thiebaut M., Kisseleva-Romanova E., Rougemaille M., Boulay J., Libri D. (2006) Mol. Cell 23, 853–864 PubMed
Arigo J. T., Eyler D. E., Carroll K. L., Corden J. L. (2006) Mol. Cell 23, 841–851 PubMed
Steinmetz E. J., Brow D. A. (1996) Mol. Cell. Biol. 16, 6993–7003 PubMed PMC
Steinmetz E. J., Conrad N. K., Brow D. A., Corden J. L. (2001) Nature 413, 327–331 PubMed
Vasiljeva L., Buratowski S. (2006) Mol. Cell 21, 239–248 PubMed
Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D. (1997) Cell 91, 457–466 PubMed
Vanácová S., Wolf J., Martin G., Blank D., Dettwiler S., Friedlein A., Langen H., Keith G., Keller W. (2005) PLoS Biol. 3, e189. PubMed PMC
LaCava J., Houseley J., Saveanu C., Petfalski E., Thompson E., Jacquier A., Tollervey D. (2005) Cell 121, 713–724 PubMed
Wyers F., Rougemaille M., Badis G., Rousselle J. C., Dufour M. E., Boulay J., Régnault B., Devaux F., Namane A., Séraphin B., Libri D., Jacquier A. (2005) Cell 121, 725–737 PubMed
Proudfoot N. J., Furger A., Dye M. J. (2002) Cell 108, 501–512 PubMed
Vasiljeva L., Kim M., Mutschler H., Buratowski S., Meinhart A. (2008) Nat. Struct. Mol. Biol. 15, 795–804 PubMed PMC
Gudipati R. K., Villa T., Boulay J., Libri D. (2008) Nat. Struct. Mol. Biol. 15, 786–794 PubMed
Steinmetz E. J., Brow D. A. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6699–6704 PubMed PMC
Conrad N. K., Wilson S. M., Steinmetz E. J., Patturajan M., Brow D. A., Swanson M. S., Corden J. L. (2000) Genetics 154, 557–571 PubMed PMC
Morlando M., Greco P., Dichtl B., Fatica A., Keller W., Bozzoni I. (2002) Mol. Cell Biol. 22, 1379–1389 PubMed PMC
Carroll K. L., Pradhan D. A., Granek J. A., Clarke N. D., Corden J. L. (2004) Mol. Cell Biol. 24, 6241–6252 PubMed PMC
Carroll K. L., Ghirlando R., Ames J. M., Corden J. L. (2007) RNA 13, 361–373 PubMed PMC
Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A., Gocayne J. D., Amanatides P., Ballew R. M., Huson D. H., Wortman J. R., Zhang Q., Kodira C. D., Zheng X. H., Chen L., Skupski M., Subramanian G., Thomas P. D., Zhang J., Miklos G. L., Nelson C., Broder S., Clark A. G., Nadeau J., McKusick V. A., Zinder N., Levine A. J., Roberts R. J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A. E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T. J., Higgins M. E., Ji R. R., Ke Z., Ketchum K. A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G. V., Milshina N., Moore H. M., Naik A. K., Narayan V. A., Neelam B., Nusskern D., Rusch D. B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., Yao A., Ye J., Zhan M., Zhang W., Zhang H., Zhao Q., Zheng L., Zhong F., Zhong W., Zhu S., Zhao S., Gilbert D., Baumhueter S., Spier G., Carter C., Cravchik A., Woodage T., Ali F., An H., Awe A., Baldwin D., Baden H., Barnstead M., Barrow I., Beeson K., Busam D., Carver A., Center A., Cheng M. L., Curry L., Danaher S., Davenport L., Desilets R., Dietz S., Dodson K., Doup L., Ferriera S., Garg N., Gluecksmann A., Hart B., Haynes J., Haynes C., Heiner C., Hladun S., Hostin D., Houck J., Howland T., Ibegwam C., Johnson J., Kalush F., Kline L., Koduru S., Love A., Mann F., May D., McCawley S., McIntosh T., McMullen I., Moy M., Moy L., Murphy B., Nelson K., Pfannkoch C., Pratts E., Puri V., Qureshi H., Reardon M., Rodriguez R., Rogers Y. H., Romblad D., Ruhfel B., Scott R., Sitter C., Smallwood M., Stewart E., Strong R., Suh E., Thomas R., Tint N. N., Tse S., Vech C., Wang G., Wetter J., Williams S., Williams M., Windsor S., Winn-Deen E., Wolfe K., Zaveri J., Zaveri K., Abril J. F., Guigó R., Campbell M. J., Sjolander K. V., Karlak B., Kejariwal A., Mi H., Lazareva B., Hatton T., Narechania A., Diemer K., Muruganujan A., Guo N., Sato S., Bafna V., Istrail S., Lippert R., Schwartz R., Walenz B., Yooseph S., Allen D., Basu A., Baxendale J., Blick L., Caminha M., Carnes-Stine J., Caulk P., Chiang Y. H., Coyne M., Dahlke C., Mays A., Dombroski M., Donnelly M., Ely D., Esparham S., Fosler C., Gire H., Glanowski S., Glasser K., Glodek A., Gorokhov M., Graham K., Gropman B., Harris M., Heil J., Henderson S., Hoover J., Jennings D., Jordan C., Jordan J., Kasha J., Kagan L., Kraft C., Levitsky A., Lewis M., Liu X., Lopez J., Ma D., Majoros W., McDaniel J., Murphy S., Newman M., Nguyen T., Nguyen N., Nodell M., Pan S., Peck J., Peterson M., Rowe W., Sanders R., Scott J., Simpson M., Smith T., Sprague A., Stockwell T., Turner R., Venter E., Wang M., Wen M., Wu D., Wu M., Xia A., Zandieh A., Zhu X. (2001) Science 291, 1304–1351 PubMed
Maris C., Dominguez C., Allain F. H. (2005) FEBS J. 272, 2118–2131 PubMed
Stefl R., Skrisovska L., Allain F. H. (2005) EMBO Rep. 6, 33–38 PubMed PMC
Cléry A., Blatter M., Allain F. H. (2008) Curr. Opin. Struct. Biol. 18, 290–298 PubMed
Pergoli R., Kubicek K., Hobor F., Pasulka J., Stefl R. (2010) Biomol. NMR Assign. 4, 119–121 PubMed
Bax A., Grzesiek S. (1993) Acc. Chem. Res. 26, 131–138
Sattler M., Schleucher J., Griesinger C. (1999) Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158
Varani G., Aboulela F., Allain F. H. (1996) Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127
Peterson R. D., Theimer C. A., Wu H., Feigon J. (2004) J. Biomol. NMR 28, 59–67 PubMed
Zwahlen C., Legault P., Vincent S. J., Greenblatt J., Konrat R., Kay L. E. (1997) J. Am. Chem. Soc. 119, 6711–6721
Güntert P. (2004) Methods Mol. Biol. 278, 353–378 PubMed
Herrmann T., Güntert P., Wüthrich K. (2002) J. Mol. Biol. 319, 209–227 PubMed
Shen Y., Delaglio F., Cornilescu G., Bax A. (2009) J. Biomol. NMR 44, 213–223 PubMed PMC
Case D. A., Darden T. A., Cheatham T. E., 3rd, Simmerling C. L., Wang J., Duke R. E., Luo R., Crowley M., Walker R. C., Zhang W., Merz K. M., Wang B., Hayik S., Roitberg A., Seabra G., Kolossváry I., Wong K. F., Paesani F., Vanicek J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Yang L., Tan C., Mongan J., Hornak V., Cui G., Mathews D. H., Seetin M. G., Sagui C., Babin V., Kollman P. A. (2008) Amber 10, University of California, San Francisco, CA
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. (1995) J. Am. Chem. Soc. 117, 5179–5197
Padrta P., Stefl R., Králík L., Zídek L., Sklenár V. (2002) J. Biomol. NMR 24, 1–14 PubMed
Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. (1996) J. Biomol. NMR 8, 477–486 PubMed
Vriend G. (1990) J. Mol. Graph. 8, 52–56, 29 PubMed
Koradi R., Billeter M., Wuthrich K. (1996) J. Mol. Graph. 14, 51–55, 29–32 PubMed
Heyduk T., Lee J. C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1744–1748 PubMed PMC
Sikorski R. S., Hieter P. (1989) Genetics 122, 19–27 PubMed PMC
Wilson S. M., Datar K. V., Paddy M. R., Swedlow J. R., Swanson M. S. (1994) J. Cell Biol. 127, 1173–1184 PubMed PMC
San Paolo S., Vanacova S., Schenk L., Scherrer T., Blank D., Keller W., Gerber A. P. (2009) PLoS Genet. 5, e1000555. PubMed PMC
Güntert P., Mumenthaler C., Wüthrich K. (1997) J. Mol. Biol. 273, 283–298 PubMed
Swanson M. S., Nakagawa T. Y., LeVan K., Dreyfuss G. (1987) Mol. Cell. Biol. 7, 1731–1739 PubMed PMC
Adam S. A., Nakagawa T., Swanson M. S., Woodruff T. K., Dreyfuss G. (1986) Mol. Cell. Biol. 6, 2932–2943 PubMed PMC
Dreyfuss G., Swanson M. S., Piñol-Roma S. (1988) Trends Biochem. Sci. 13, 86–91 PubMed
Auweter S. D., Oberstrass F. C., Allain F. H. (2007) J. Mol. Biol. 367, 174–186 PubMed
Hargous Y., Hautbergue G. M., Tintaru A. M., Skrisovska L., Golovanov A. P., Stevenin J., Lian L. Y., Wilson S. A., Allain F. H. (2006) EMBO J. 25, 5126–5137 PubMed PMC
Oberstrass F. C., Auweter S. D., Erat M., Hargous Y., Henning A., Wenter P., Reymond L., Amir-Ahmady B., Pitsch S., Black D. L., Allain F. H. (2005) Science 309, 2054–2057 PubMed
Kielkopf C. L., Rodionova N. A., Green M. R., Burley S. K. (2001) Cell 106, 595–605 PubMed
Singh R., Valcárcel J., Green M. R. (1995) Science 268, 1173–1176 PubMed
Mulder F. A., Schipper D., Bott R., Boelens R. (1999) J. Mol. Biol. 292, 111–123 PubMed
Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. (2003) Nucleic Acids Res. 31, 3497–3500 PubMed PMC
Spronk C. A. E. M., Nabuurs S. B., Krieger E., Vriend G., Vuister G. W. (2004) Prog. Nucleic Magn. Res. Spectro. 45, 315–337
Hooft R. W., Sander C., Vriend G. (1997) Comput. Appl. Biosci. 13, 425–430 PubMed
Trantírek L., Stefl R., Masse J. E., Feigon J., Sklenár V. (2002) J. Biomol. NMR 23, 1–12 PubMed
DeLano W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific, Palo Alto, CA
Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro
RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs
Molecular basis for coordinating transcription termination with noncoding RNA degradation
Structure and semi-sequence-specific RNA binding of Nrd1
Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
PDB
2KVI, 2L41