Experimental approaches to evaluate activities of cytochromes P450 3A
Status PubMed-not-MEDLINE Jazyk angličtina Země Slovensko Médium print
Typ dokumentu časopisecké články
PubMed
21218106
PubMed Central
PMC2993482
DOI
10.2478/v10102-010-0032-0
Knihovny.cz E-zdroje
- Klíčová slova
- cytochrome P450 3A, metabolism, α-naphthoflavone,
- Publikační typ
- časopisecké články MeSH
Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b(5) (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b(5), and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b(5) in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b(5). The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro.
Zobrazit více v PubMed
Andries M. J., Lucier G. W., Goldstein J., Thompson C. L. Involvement of cytochrome P-450c in alpha-naphthoflavone metabolism by rat liver microsomes. Mol Pharmacol. 1990;37:990–5. PubMed
Aoyama T., S, Yamano D. J, Waxman D. P, Lapenson U. A, Meyer V, Fischer R, Tyndale T, Inaba W, Kalow H. V, Gelboin, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem. 1989;264:10388–95. PubMed
Atkins W. M. Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu Rev Pharmacol Toxicol. 2005;45:291–310. PubMed
Atkins W. M., Wang R. W., Lu A. Y. Allosteric behavior in cytochrome p450-dependent in vitro drug-drug interactions: a prospective based on conformational dynamics. Chem Res Toxicol. 2001;14:338–47. PubMed
Beaune P. H., Umbenhauer D. R., Bork R. W., Lloyd R. S., Guengerich F. P. Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc Natl Acad Sci U S A. 1986;83:8064–8. PubMed PMC
Burke M. D., Thompson S., Elcombe C. R., Halpert J., Haaparanta T., Mayer R. T. Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol. 1985;34:3337–45. PubMed
Domanski T. L., Liu J., Harlow G. R., Halpert J. R. Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and alpha-naphthoflavone stimulation. Arch Biochem Biophys. 1998;350:223–32. PubMed
Ekins S., Stresser D. M., Williams J. A. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci. 2003;24:161–6. PubMed
Galetin A., Clarke S. E., Houston J. B. Quinidine and haloperidol as modifiers of CYP3A4 activity: multisite kinetic model approach. Drug Metab Dispos. 2002;30:1512–22. PubMed
Gonzalez F. J., Gelboin H. V. Human cytochromes P450: evolution and cDNA-directed expression. Environ Health Perspect. 1992;98:81–5. PubMed PMC
Guengerich F. P. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1–17. PubMed
Guryev O. L., Gilep A. A., Usanov S. A., Estabrook R. W. Interaction of apo-cytochrome b5 with cytochromes P4503A4 and P45017A: relevance of heme transfer reactions. Biochemistry. 2001;40:5018–31. PubMed
Harlow G. R., Halpert J. R. Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc Natl Acad Sci U S A. 1998;95:6636–41. PubMed PMC
Haugen D. A., Coon M. J. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J Biol Chem. 1976;251:7929–39. PubMed
Hosea N. A., Miller G. P., Guengerich F. P. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry. 2000;39:5929–39. PubMed
Isin E. M., Guengerich F. P. Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. J Biol Chem. 2006;281:9127–36. PubMed
Kitada M., Kamataki T., Itahashi K., Rikihisa T., Kato R., Kanakubo Y. Purification and properties of cytochrome P-450 from homogenates of human fetal livers. Arch Biochem Biophys. 1985;241:275–80. PubMed
Koley A. P., Buters J. T., Robinson R. C., Markowitz A., Friedman F. K. Differential mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J Biol Chem. 1997;272:3149–52. PubMed
Kumar S., Davydov D. R., Halpert J. R. Role of cytochrome B5 in modulating peroxide-supported cyp3a4 activity: evidence for a conformational transition and cytochrome P450 heterogeneity. Drug Metab Dispos. 2005;33:1131–6. PubMed
Omura T., Sato R. The Carbon Monoxide-Binding Pigment of Liver Microsomes. II. Solubilization, Purification, and Properties. J Biol Chem. 1964;239:2379–85. PubMed
Ortiz de Montellano P. R. The 1994 Bernard B. Brodie Award Lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug Metab Dispos. 1995;23:1181–7. PubMed
Patki K. C., Von Moltke L. L., Greenblatt D. J. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31:938–44. PubMed
Reed J. R., Hollenberg P. F. Comparison of substrate metabolism by cytochromes P450 2B1, 2B4, and 2B6: relationship of heme spin state, catalysis, and the effects of cytochrome b5. J Inorg Biochem. 2003a;93:152–60. PubMed
Reed J. R., Hollenberg P. F. Examining the mechanism of stimulation of cytochrome P450 by cytochrome b5: the effect of cytochrome b5 on the interaction between cytochrome P450 2B4 and P450 reductase. J Inorg Biochem. 2003b;97:265–75. PubMed
Shimada T., Yamazaki H. Cytochrome P450 reconstitution systems. Methods Mol Biol. 1998;107:85–93. PubMed
Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23. PubMed
Shou M., Grogan J., Mancewicz J. A., Krausz K. W., Gonzalez F. J., Gelboin H. V., Korzekwa K. R. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry. 1994;33:6450–5. PubMed
Schenkman J. B., Jansson I. Interactions between cytochrome P450 and cytochrome b5. Drug Metab Rev. 1999;31:351–64. PubMed
Stiborova M., Asfaw B., Frei E., Schmeiser H. H., Wiessler M. Benzenediazonium ion derived from Sudan I forms an 8-(phenylazo)guanine adduct in DNA. Chem Res Toxicol. 1995;8:489–98. PubMed
Stiborova M., Frei E., Schmeiser H. H., Wiessler M., Hradec J. Mechanism of formation and 32P-postlabeling of DNA adducts derived from peroxidative activation of carcinogenic non-aminoazo dye 1-phenylazo-2-hydroxynaphthalene (Sudan I) Carcinogenesis. 1990;11:1843–8. PubMed
Tang W., Stearns R. A. Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr Drug Metab. 2001;2:185–98. PubMed
Thakker D. R., Levin W., Buening M., Yagi H., Lehr R. E., Wood A. W., Conney A. H., Jerina D. M. Species-specific enhancement by 7,8-benzoflavone of hepatic microsomal metabolism of benzo[e]pyrene 9,10-dihydrodiol to bay-region diol epoxides. Cancer Res. 1981;41:1389–96. PubMed
Tsalkova T. N., Davydova N. Y., Halpert J. R., Davydov D. R. Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry. 2007;46:106–19. PubMed PMC
Ueng Y. F., Kuwabara T., Chun Y. J., Guengerich F. P. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry. 1997;36:370–81. PubMed
Wiechelman K. J., Braun R. D., Fitzpatrick J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem. 1988;175:231–7. PubMed
Yamada M., Ohta Y., Bachmanova G. I., Nishimoto Y., Archakov A. I., Kawato S. Dynamic interactions of rabbit liver cytochromes P450IA2 and P450IIB4 with cytochrome b5 and NADPH-cytochrome P450 reductase in proteoliposomes. Biochemistry. 1995;34:10113–9. PubMed
Yamaori S., Yamazaki H., Suzuki A., Yamada A., Tani H., Kamidate T., Fujita K., Kamataki T. Effects of cytochrome b(5) on drug oxidation activities of human cytochrome P450 (CYP) 3As: similarity of CYP3A5 with CYP3A4 but not CYP3A7. Biochem Pharmacol. 2003;66:2333–40. PubMed
Yamazaki H., Johnson W. W., Ueng Y. F., Shimada T., Guengerich F. P. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem. 1996;271:27438–44. PubMed
Yamazaki H., Nakajima M., Nakamura M., Asahi S., Shimada N., Gillam E. M., Guengerich F. P., Shimada T., Yokoi T. Enhancement of cytochrome P-450 3A4 catalytic activities by cytochrome b(5) in bacterial membranes. Drug Metab Dispos. 1999;27:999–1004. PubMed
Yamazaki H., Shimada T., Martin M. V., Guengerich F. P. Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. J Biol Chem. 2001;276:30885–91. PubMed
Yang C. S., Tu Y. Y., Koop D. R., Coon M. J. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes. Cancer Res. 1985;45:1140–5. PubMed
Yasukochi Y., Peterson J. A., Masters B. S. NADPH-cytochrome c (P-450) reductase. Spectrophotometric and stopped flow kinetic studies on the formation of reduced flavoprotein intermediates. J Biol Chem. 1979;254:7097–104. PubMed