Correlation of dynamic impact testing, histopathology and visual macroscopic assessment in human osteoarthritic cartilage
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21243357
PubMed Central
PMC3193956
DOI
10.1007/s00264-010-1195-1
Knihovny.cz E-zdroje
- MeSH
- artróza kolenních kloubů patologie patofyziologie chirurgie MeSH
- biomechanika MeSH
- kloubní chrupavka patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- pevnost v tlaku MeSH
- pružnost MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Improved staging of cartilage degeneration is required, particularly during the early stages. We correlated mechanical properties with histological and macroscopic findings. METHODS: One hundred and twenty cartilage samples were obtained during total knee arthroplasty. Two adjacent plugs were harvested--one for histological classification and one for macroscopic and biomechanical purposes. Dynamic impact testing was performed; normal stress, dissipated energy (∆E), tangent modulus and stiffness were evaluated. RESULTS: Samples were classified according to six categories of the ICRS histological scale. Mechanical characteristics revealing significant differences between the groups (p < 0.01) were specific damping and related absolute ∆E. A significant correlation was found between the macroscopic score and specific damping, as well as absolute and relative ∆E (p < 0.01). A strong relation was revealed between relative ∆E and cartilage thickness (p < 0.001; R (2) = 0.69). CONCLUSIONS: Only ∆E correlated with the condition of the cartilage--the value increased with decreasing quality-and is the most suitable characteristic. This change appears substantial in initial stages of cartilage deterioration.
Zobrazit více v PubMed
Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97. doi: 10.1016/0142-9612(92)90001-5. PubMed DOI
Hall AC, Horwitz ER, Wilkins RJ. The cellular physiology of articular cartilage. Exp Physiol. 1996;81(3):535–545. PubMed
Burgin LV, Aspden RM. A drop tower for controlled impact testing of biological tissues. Med Eng Phys. 2007;29(4):525–530. doi: 10.1016/j.medengphy.2006.06.002. PubMed DOI
Aspden RM, Jeffrey JE, Burgin LV. Impact loading: physiological or pathological? Osteoarthritis Cartilage. 2002;10(7):588–589. doi: 10.1053/joca.2002.0803. PubMed DOI
Repo RU, Finlay JB. Survival of articular-cartilage after controlled impact. J Bone Joint Surg Am. 1977;59(8):1068–1076. PubMed
Burgin LV, Aspden RM. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci Mater Med. 2008;19(2):703–711. doi: 10.1007/s10856-007-3187-2. PubMed DOI
Verteramo A, Seedhom BB. Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J Biomech. 2007;40(16):3580–3589. doi: 10.1016/j.jbiomech.2007.06.002. PubMed DOI
Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, et al. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(1):65–77. doi: 10.1053/joca.2002.0867. PubMed DOI
Oakley SP, Lassere MN, Portek I, Szomor Z, Ghosh P, Kirkham BW, et al. Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis. Osteoarthritis Cartilage. 2004;12(8):667–679. doi: 10.1016/j.joca.2004.05.006. PubMed DOI
Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade) Osteoarthritis Cartilage. 2005;13(11):958–963. doi: 10.1016/j.joca.2005.06.008. PubMed DOI
Young AA, Appleyard RC, Smith MM, Melrose J, Little CB. Dynamic biomechanics correlate with histopathology in human tibial cartilage: a preliminary study. Clin Orthop Relat Res. 2007;462:212–220. doi: 10.1097/BLO.0b013e318076b431. PubMed DOI
Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage. 2001;9(6):582–592. doi: 10.1053/joca.2001.0418. PubMed DOI
Appleyard RC, Swain MV, Khanna S, Murrell GAC. The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys Med Biol. 2001;46(2):541–550. doi: 10.1088/0031-9155/46/2/319. PubMed DOI
Niederauer GG, Niederauer GM, Cullen LC, Athanasiou KA, Thomas JB, Niederauer MQ. Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng. 2004;32(3):352–359. doi: 10.1023/B:ABME.0000017550.02388.c5. PubMed DOI
Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53(3):523–537. PubMed
Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS) J Bone Joint Surg Am. 2003;2(85-A Suppl):45–57. PubMed
Brittberg M, Peterson L. Introduction to an articular cartilage classification. ICRS Newsl. 1998;1:8.
Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage. 1999;7(1):95–109. doi: 10.1053/joca.1998.0165. PubMed DOI
Mollenhauer J, Aurich ME, Zhong Z, Muehleman C, Cole CC, Hasnah M, et al. Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage. 2002;10(3):163–171. doi: 10.1053/joca.2001.0496. PubMed DOI
Nissi MJ, Toyras J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, et al. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res. 2004;22(3):557–564. doi: 10.1016/j.orthres.2003.09.008. PubMed DOI
Kuroki H, Nakagawa Y, Mori K, Kobayashi M, Yasura K, Okamoto Y, et al. Ultrasound properties of articular cartilage in the tibio-femoral joint in knee osteoarthritis: relation to clinical assessment (International Cartilage Repair Society grade) Arthritis Res Ther. 2008;10(4):R78. doi: 10.1186/ar2452. PubMed DOI PMC
Appleyard RC, Ghosh P, Swain MV. Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. Osteoarthritis Cartilage. 1999;7(3):281–294. doi: 10.1053/joca.1998.0202. PubMed DOI
Varga F, Drzik M, Handl M, Chlpik J, Kos P, Filová E, et al. Biomechanical characterization of cartilages by a novel approach of blunt impact testing. Physiol Res. 2007;56(Suppl 1):S61–S68. PubMed
Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S, et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 2010;17(6):779–789. doi: 10.1038/gt.2010.16. PubMed DOI
Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S. Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop. 2002;26(3):131–136. doi: 10.1007/s00264-002-0338-4. PubMed DOI PMC
Bae WC, Temple MM, Amiel D, Coutts RD, Niederauer GG, Sah RL. Indentation testing of human cartilage: Sensitivity to articular surface degeneration. Arthritis Rheum. 2003;48(12):3382–3394. doi: 10.1002/art.11347. PubMed DOI
Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27–34. doi: 10.1136/ard.58.1.27. PubMed DOI PMC