Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
- MeSH
- Water Pollutants, Chemical toxicity MeSH
- Embryo, Nonmammalian drug effects MeSH
- Embryonic Development drug effects MeSH
- Oxidative Stress drug effects MeSH
- Pesticides toxicity MeSH
- DNA Damage drug effects MeSH
- Aquatic Organisms drug effects growth & development MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- Pesticides MeSH
Many pesticides have been documented to induce embryotoxicity and teratogenicity in non-target aquatic biota such a fish, amphibians and invertebrates. Our review of the existing literature shows that a broad range of pesticides, representing several different chemical classes, induce variable toxic effects in aquatic species. The effects observed include diverse morphological malformations as well as physiological and behavioral effects. When development malformations occur, the myoskeletal system is among the most highly sensitive of targets. Myoskeletal effects that have been documented to result from pesticides were also known to interfere with the development of organ systems including the eyes or the heart and are also known to often cause lethal or sublethal edema in exposed organisms. The Physiological, behavioral, and population endpoints affected by pesticides include low or delayed hatching, growth suppression, as well as embryonal or larval mortality. The risks associated with pesticide exposure increase particularly during the spring. This is the period of time in which major pepticide applications take place, and this period unfortunately also coincides with many sensitive reproductive events such as spawning, egg laying, and early development of many aquatic organisms. Only few experimental studies with pesticides have directly linked developmental toxicity with key oxidative stress endpoints, such as lipid peroxidation, oxidative DNA damage, or modulation of antioxidant mechanisms. On the other hand, it has been documented in many reports that pesticide-related oxidative damage occurs in exposed adult fish, amphibians, and invertebrates. Moreover, the contribution of oxidative stress to the toxicity of pesticides has been emphasized in several recent review papers that have treated this topic. In conclusion, the available experimental data, augmented by several indirect lines of evidence, provide support to the concept that oxidative stress is a highly important mechanism in pesticide-induce reproductive or developmental toxicity. Other stressors may also act by oxidative mechanisms. This notwithstanding, there is much yet to learn about the details of this phenomenon and further research is needed to more fully elucidate the effects that pesticides have and the environmental risks they pose in the early development of aquatic organisms.
References provided by Crossref.org