Measuring and Monte Carlo Modelling of X-Ray and Gamma-Ray Attenuation in Personal Radiation Shielding Protective Clothing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31827582
PubMed Central
PMC6885783
DOI
10.1155/2019/1641895
Knihovny.cz E-zdroje
- MeSH
- aerosoly MeSH
- dávka záření MeSH
- fotony MeSH
- lidé MeSH
- metoda Monte Carlo MeSH
- ochranné oděvy * MeSH
- počítačová simulace MeSH
- radiační ochrana přístrojové vybavení metody MeSH
- radiační rozptyl MeSH
- radiografie MeSH
- rentgenové záření MeSH
- záření gama * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
A collection of personal protective equipment (PPE), suitable for use in case of accident in nuclear facilities or radiological emergencies, was gathered at the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. The shielding characteristics of the various PPE materials were measured via narrow geometry spectral attenuation measurements with point radionuclide sources covering a broad range of photon energies. Photon relative penetration and attenuation for relevant energies of the spectra were the principal experimentally determined quantities for tested PPE. Monte Carlo simulations in the MCNPX™ code were carried out to determine photon attenuation for respective energies in the tested PPE, and the results were compared to those determined experimentally. Energy depositions in a unit volume of an ORNL phantom were simulated in a radioactive aerosols atmospheric environment to determine effective doses both for the whole body and in various organs in the human torso during exposure to different dispersed radioactive aerosols while wearing one of the PPE protecting against X- and gamma-ray. This work aimed to determine the effective dose and its decrease for individual PPE protecting against X- and gamma-ray.
Zobrazit více v PubMed
National Fire Protection Association. NFPA 1994 Standard on Protective Ensembles for First Responders to CBRN Terrorism Incidents. 2007. Quincy, MA, USA: National Fire Protection Association; 2006. http://www.niordc.ir/uploads/nfpa_1994_-_2007.pdf.
Kozlovska M., Cerny R., Otahal P. Attenuation of X and gamma rays in personal radiation shielding protective clothing. Health Physics. 2015;109(Supplement 3):S205–S211. doi: 10.1097/hp.0000000000000361. PubMed DOI
Johnson T. E., Birty B. K. Health Physics and Radiological Health. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 1998.
Burian I., Otahal P., Vosahlik J., Pilecka E. Czech primary radon measurement equipment. Radiation Protection Dosimetry. 145(2-3):333–336. doi: 10.1093/rpd/ncr041. PubMed DOI
Pelowitz D. B. Los Alamos, NM, USA: Los Alamos National Laboratory; 2011. MCNPX™ 2.7.E extensions—a general monte carlo n particle transport code. Report LA-UR-11-01502.
White M. C. Los Alamos, NM, USA: Los Alamos National Laboratory; 2003. Photo-atomic data library MCPLIB04: A New Photoatomic library based on data from ENDF/B-VI release 8. Report LA-UR-03-1019.
Adams K. J. Los Alamos, NM, USA: Los Alamos National Laboratory; 2000. Electron upgrade for MCNP4B. Report LA-UR-00-3581.
Eckerman K. F., Cristy M., Ryman J. C. The ORNL Mathematical Phantom Series. 1996.
Eckerman K. F., Sjoreen A. L. Oak Ridge National Laboratory, ORNL/TM‐2013/16. Oak Ridge, TN, USA: U.S. Nuclear Regulatory Commission, NUREG/CR‐7166; 2013. Radiological Toolbox User’s Guide.
International Commission on Radiological Protection. Annals of the ICRP. 2/3. Vol. 16. New York, NY, USA: Pergamon Press; 1983. Radionuclide transformations: energy and intensity of emissions. ICRP publication 38. PubMed
ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Annals of the ICRP. 2007;37(2-4) PubMed
CENELEC. Protective Devices against Diagnostic Medical X-Radiation— Part 3: Protective Clothing and Protective Devices for Gonads. Brussels, Belgium: CENELEC EN 61331-3; 1999.