Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
087622
Wellcome Trust - United Kingdom
PubMed
21310784
PubMed Central
PMC3352162
DOI
10.1099/mic.0.046946-0
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- meningokokové infekce mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- Neisseria meningitidis genetika izolace a purifikace metabolismus patogenita MeSH
- přenašečství mikrobiologie MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- virulence MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- HmbR protein, Neisseria meningitidis MeSH Prohlížeč
- HpuA protein, Neisseria MeSH Prohlížeč
- HpuB protein, Neisseria MeSH Prohlížeč
- proteiny vnější bakteriální membrány MeSH
- receptory buněčného povrchu MeSH
- železo MeSH
Neisseria meningitidis can utilize haem, haemoglobin and haemoglobin-haptoglobin complexes as sources of iron via two TonB-dependent phase variable haemoglobin receptors, HmbR and HpuAB. HmbR is over-represented in disease isolates, suggesting a link between haemoglobin acquisition and meningococcal disease. This study compared the distribution of HpuAB and phase variation (PV) status of both receptors in disease and carriage isolates. Meningococcal disease (n = 214) and carriage (n = 305) isolates representative of multiple clonal complexes (CCs) were investigated for the distribution, polyG tract lengths and ON/OFF status of both haemoglobin receptors, and for the deletion mechanism for HpuAB. Strains with both receptors or only hmbR were present at similar frequencies among meningococcal disease isolates as compared with carriage isolates. However, >90 % of isolates from the three CCs CC5, CC8 and CC11 with the highest disease to carriage ratios contained both receptors. Strains with an hpuAB-only phenotype were under-represented among disease isolates, suggesting selection against this receptor during systemic disease, possibly due to the receptor having a high level of immunogenicity or being inefficient in acquisition of iron during systemic spread. Absence of hpuAB resulted from either complete deletion or replacement by an insertion element. In an examination of PV status, one or both receptors were found in an ON state in 91 % of disease and 71 % of carriage isolates. We suggest that expression of a haemoglobin receptor, either HmbR or HpuAB, is of major importance for systemic spread of meningococci, and that the presence of both receptors contributes to virulence in some strains.
Department of Genetics University of Leicester Leicester LE1 7RH UK
Molecular Bacteriology and Immunology Group University of Nottingham Nottingham UK
School of Community Health Sciences University of Nottingham Nottingham UK
The Department of Zoology University of Oxford South Parks Road Oxford OX1 3SY UK
Zobrazit více v PubMed
Bayliss C. D., Hoe J. C., Makepeace K., Martin P., Hood D. W., Moxon E. R. (2008). Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect Immun 76, 5038–5048. 10.1128/IAI.00395-08. PubMed DOI PMC
Bidmos F. A., Neal K. R., Oldfield N. J., Turner D. P., Ala’aldeen D. A., Bayliss C. D. (2011). Persistence, replacement and rapid clonal expansion of meningococcal carriage isolates in a 2008 university student cohort. J Clin Microbiol 49, 506–512. PubMed PMC
Boulton I. C., Gorringe A. R., Allison N., Robinson A., Gorinsky B., Joannou C. L., Evans R. W. (1998). Transferrin-binding protein B isolated from Neisseria meningitidis discriminates between apo and diferric human transferrin. Biochem J 334, 269–273. PubMed PMC
Caugant D. A., Maiden M. C. (2009). Meningococcal carriage and disease – population biology and evolution. Vaccine 27 Suppl. 2B64–B70. 10.1016/j.vaccine.2009.04.061. PubMed DOI PMC
Claus H., Vogel U., Mühlenhoff M., Gerardy-Schahn R., Frosch M. (1997). Molecular divergence of the sia locus in different serogroups of Neisseria meningitidis expressing polysialic acid capsules. Mol Gen Genet 257, 28–34. 10.1007/PL00008618. PubMed DOI
De Bolle X., Bayliss C. D., Field D., van de Ven T., Saunders N. J., Hood D. W., Moxon E. R. (2000). The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35, 211–222. 10.1046/j.1365-2958.2000.01701.x. PubMed DOI
Evans N. J., Harrison O. B., Clow K., Derrick J. P., Feavers I. M., Maiden M. C. (2010). Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. Microbiology 156, 1384–1393. 10.1099/mic.0.036475-0. PubMed DOI PMC
Harrison O. B., Evans N. J., Blair J. M., Grimes H. S., Tinsley C. R., Nassif X., Kriz P., Ure R., Gray S. J., et al. (2009). Epidemiological evidence for the role of the hemoglobin receptor, HmbR, in meningococcal virulence. J Infect Dis 200, 94–98. 10.1086/599377. PubMed DOI PMC
Jolley K. A., Kalmusova J., Feil E. J., Gupta S., Musilek M., Kriz P., Maiden M. C. (2000). Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38, 4492–4498. PubMed PMC
Jordan P. W., Saunders N. J. (2009). Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS ONE 4, e5198. 10.1371/journal.pone.0005198. PubMed DOI PMC
Lewis L. A., Dyer D. W. (1995). Identification of an iron-regulated outer membrane protein of Neisseria meningitidis involved in the utilization of hemoglobin complexed to haptoglobin. J Bacteriol 177, 1299–1306. PubMed PMC
Lewis L. A., Gipson M., Hartman K., Ownbey T., Vaughn J., Dyer D. W. (1999). Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32, 977–989. 10.1046/j.1365-2958.1999.01409.x. PubMed DOI
Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K., et al. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145. 10.1073/pnas.95.6.3140. PubMed DOI PMC
Maiden M. C. J., Stuart J. M., The UK Meningococcal Carriage Group (2002). Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 359, 1829–1830. 10.1128/JCM.02422-06. PubMed DOI
Marsh J. W., O’Leary M. M., Shutt K. A., Harrison L. H. (2007). Deletion of fetA gene sequences in serogroup B and C Neisseria meningitidis isolates. J Clin Microbiol 45, 1333–1335. 10.1128/JCM.02422-06. PubMed DOI PMC
Martin P., Sun L., Hood D. W., Moxon E. R. (2004). Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. Microbiology 150, 3001–3012. 10.1099/mic.0.27182-0. PubMed DOI
Moxon R., Bayliss C. D., Hood D. W. (2006). Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40, 307–333. 10.1146/annurev.genet.40.110405.090442. PubMed DOI
Otto B. R., Verweij-van Vught A. M., MacLaren D. M. (1992). Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18, 217–233. 10.3109/10408419209114559. PubMed DOI
Perkins-Balding D., Baer M. T., Stojiljkovic I. (2003). Identification of functionally important regions of a haemoglobin receptor from Neisseria meningitidis. Microbiology 149, 3423–3435. 10.1099/mic.0.26448-0. PubMed DOI
Perkins-Balding D., Ratliff-Griffin M., Stojiljkovic I. (2004). Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68, 154–171. .10.1128/MMBR.68.1.154-171.2004. PubMed DOI PMC
Pollard A. J. (2004). Global epidemiology of meningococcal disease and vaccine efficacy. Pediatr Infect Dis J 23 Suppl. 12S274–S279. PubMed
Richardson A. R., Stojiljkovic I. (1999). HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis, undergoes phase variation. J Bacteriol 181, 2067–2074. PubMed PMC
Richardson A. R., Yu Z., Popovic T., Stojiljkovic I. (2002). Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci U S A 99, 6103–6107. 10.1073/pnas.092568699. PubMed DOI PMC
Rohde K. H., Dyer D. W. (2004). Analysis of haptoglobin and hemoglobin-haptoglobin interactions with the Neisseria meningitidis TonB-dependent receptor HpuAB by flow cytometry. Infect Immun 72, 2494–2506. 10.1128/IAI.72.5.2494-2506.2004. PubMed DOI PMC
Russell J. E., Jolley K. A., Feavers I. M., Maiden M. C., Suker J. (2004). PorA variable regions of Neisseria meningitidis. Emerg Infect Dis 10, 674–678. PubMed PMC
Stephens D. S. (2007). Conquering the meningococcus. FEMS Microbiol Rev 31, 3–14. 10.1111/j.1574-6976.2006.00051.x. PubMed DOI
Thompson E. A., Feavers I. M., Maiden M. C. (2003). Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology 149, 1849–1858. 10.1099/mic.0.26131-0. PubMed DOI
van der Ende A., Hopman C. T., Dankert J. (1999). Deletion of porA by recombination between clusters of repetitive extragenic palindromic sequences in Neisseria meningitidis. Infect Immun 67, 2928–2934. PubMed PMC
GENBANK
JF342999, JF343000, JF343001, JF343002, JF343003, JF343004, JF343005