The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks
Jazyk angličtina Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 HD061117
NICHD NIH HHS - United States
PubMed
21456833
PubMed Central
PMC4108645
DOI
10.1063/1.3553181
Knihovny.cz E-zdroje
- MeSH
- databáze jako téma MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- modely neurologické * MeSH
- mozek fyziologie MeSH
- nelineární dynamika * MeSH
- nervová síť fyziologie MeSH
- odpočinek fyziologie MeSH
- statistika jako téma MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In recent years, there has been an increasing interest in the study of large-scale brain activity interaction structure from the perspective of complex networks, based on functional magnetic resonance imaging (fMRI) measurements. To assess the strength of interaction (functional connectivity, FC) between two brain regions, the linear (Pearson) correlation coefficient of the respective time series is most commonly used. Since a potential use of nonlinear FC measures has recently been discussed in this and other fields, the question arises whether particular nonlinear FC measures would be more informative for the graph analysis than linear ones. We present a comparison of network analysis results obtained from the brain connectivity graphs capturing either full (both linear and nonlinear) or only linear connectivity using 24 sessions of human resting-state fMRI. For each session, a matrix of full connectivity between 90 anatomical parcel time series is computed using mutual information. For comparison, connectivity matrices obtained for multivariate linear Gaussian surrogate data that preserve the correlations, but remove any nonlinearity are generated. Binarizing these matrices using multiple thresholds, we generate graphs corresponding to linear and full nonlinear interaction structures. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures-clustering coefficient and betweenness centrality. Nevertheless, subsequent quantitative comparison shows that the nonlinearity effect is practically negligible when compared to the intersubject variability of the graph measures. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.
Zobrazit více v PubMed
Boccaletti S., Latora V., Moreno Y., Chavez M., and Hwang D.-U., Phys. Rep. 424, 175 (2006).10.1016/j.physrep.2005.10.009 DOI
Donges J. F., Zou Y., Marwan N., and Kurths J., Eur. Phys. J. Spec. Top. 174,157 (2009).10.1140/epjst/e2009-01098-2 DOI
Bullmore E. and Sporns O., Nat. Rev. Neurosci. 10, 186 (2009).10.1038/nrn2575 PubMed DOI
Kreuz T., Mormann F., Andrzejak R. G., Kraskov A., Lehnertz K., and Grassberger P., Physica D 225, 29 (2007).10.1016/j.physd.2006.09.039 DOI
Lehnertz K., Bialonski S., Horstmann M.-T., Krug D., Rothkegel A., Staniek M., and Wagner T., J. Neurosci. Methods 183, 42 (2009).10.1016/j.jneumeth.2009.05.015 PubMed DOI
Pereda E., Quiroga R. Q., and Bhattacharya J., Prog. Neurobiol. 77, 1 (2005).10.1016/j.pneurobio.2005.10.003 PubMed DOI
Hlavackova-Schindler K., Palus M., Vejmelka M., and Bhattacharya J., Phys. Rep. 441, 1 (2007).10.1016/j.physrep.2006.12.004 DOI
Palus M., Albrecht V., and Dvorak I., Phys. Lett. A 175, 203 (1993).10.1016/0375-9601(93)90827-M DOI
Palus M., Physica D 80, 186 (1995).10.1016/0167-2789(95)90079-9 DOI
Palus M., Phys. Lett. A 213, 138 (1996).10.1016/0375-9601(96)00116-8 DOI
Palus M., Contemp. Phys. 48, 307 (2007).10.1080/00107510801959206 DOI
Theiler J., Eubank S., Longtin A., Galdrikian B., and Farmer J. D., Physica D 58, 77 (1992).10.1016/0167-2789(92)90102-S DOI
Vejmelka M. and Palus M., Phys. Rev. E 77, 026214 (2008).10.1103/PhysRevE.77.026214 PubMed DOI
Palus M. and Novotna D., Phys. Lett. A 193, 67 (1994).10.1016/0375-9601(94)91002-2 DOI
Benitez R., Alvarez-Lacalle E., Echebarria B., Gomis P., Vallverdu M., and Caminal P., Med. Eng. Phys. 31, 660 (2009).10.1016/j.medengphy.2008.12.006 PubMed DOI
Palus M., Biol. Cybern. 75, 389 (1996).10.1007/s004220050304 PubMed DOI
Palus M., Komarek V., Hrncir Z., and Prochazka T., Theory Biosci. 118, 179 (1999).
Alonso J. F., Mananas M. A., Romero S., Hoyer D., Riba J., and Barbanoj M. J., Hum. Brain Mapp. 31, 487 (2010).10.1002/hbm.20881 PubMed DOI PMC
Alonso J. F., Poza J., Mananas M. A., Romero S., Fernandez A., and Hornero R., Ann. Biomed. Eng. 39(1), 524 (2011).10.1007/s10439-010-0155-7 PubMed DOI
Wang J., Zuo X., and He Y., Front. Syst. Neurosci. 4, 16 (2010).10.3389/fnsys.2010.00016 PubMed DOI PMC
Hlinka J., Palus M., Vejmelka M., Mantini D., and Corbetta M., Neuroimage 54, 2218 (2011).10.1016/j.neuroimage.2010.08.042 PubMed DOI PMC
Ogawa S., Lee T. M., Kay A. R., and Tank D. W., Proc. Natl. Acad. Sci. U.S.A. 87, 9868 (1990).10.1073/pnas.87.24.9868 PubMed DOI PMC
Statistical Parametric Mapping: The Analysis of Functional Brain Images, edited by Friston K. J., Ashburner J., Kiebel S. J., Nichols T. E., and Penny W. D. (Academic, London, 2007).
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., and Joliot M., Neuroimage 15, 273 (2002).10.1006/nimg.2001.0978 PubMed DOI
Prichard D. and Theiler J., Phys. Rev. Lett. 73, 951 (1994).10.1103/PhysRevLett.73.951 PubMed DOI
Palus M., Phys. Lett. A 235, 341 (1997).10.1016/S0375-9601(97)00635-X DOI
Schreiber T. and Schmitz A., Phys. Rev. Lett. 77, 635 (1996).10.1103/PhysRevLett.77.635 PubMed DOI
Palus M., Neural Network World 7, 269 (1997).
Palus M. and Vejmelka M., Phys. Rev. E 75, 056211 (2007).10.1103/PhysRevE.75.056211 PubMed DOI
Bollobas B., Modern Graph Theory (Springer, New York, 1998).
Diestel R., Graph Theory (Springer, New York, 2000).
Godsil C. and Royle G., Algebraic Graph Theory (Springer, New York, 2001).
Networks, Topology and Dynamics: Theory and Applications to Economics and Social Systems, edited by Torriero A.Naimzada A. K., and Stefani S. (Springer, New York, 2008).
Schultz H. P., J. Chem. Inf. Comput. Sci. 29, 227 (1989).10.1021/ci00063a012 DOI
Papin J. A., Price N. D., Wiback S. J., Fell D. A., and Palsson B. O., Trends Biochem. Sci. 28, 250 (2003).10.1016/S0968-0004(03)00064-1 PubMed DOI
Barabasi A. L. and Albert R., Science 286, 509 (1999).10.1126/science.286.5439.509 PubMed DOI
Watts D. J. and Strogatz S. H., Nature (London) 393, 440 (2009).10.1038/30918 PubMed DOI
Freeman L. C., Soc. Networks 1, 215 (1978–1979).10.1016/0378-8733(78)90021-7 DOI
Brandes U., J. Math. Sociol. 25, 163 (2001).10.1080/0022250X.2001.9990249 DOI
Brandes U., Soc. Networks 30, 136 (2008).10.1016/j.socnet.2007.11.001 DOI
Holme P. and Kim B. J., Phys. Rev. E 65, 066109 (2002).10.1103/PhysRevE.65.066109 PubMed DOI
Latora V. and Marchiori M., Phys. Rev. Lett. 87, 198701 (2001).10.1103/PhysRevLett.87.198701 PubMed DOI
Latora V. and Marchiori M., Eur. Phys. J. B 32, 249 (2003).10.1140/epjb/e2003-00095-5 DOI
Newman M. E. J., Phys. Rev. Lett. 89, 208701 (2002).10.1103/PhysRevLett.89.208701 PubMed DOI
Gallos L. K., Song C., and Makse H. A., Phys. Rev. Lett. 100, 248701 (2008).10.1103/PhysRevLett.100.248701 PubMed DOI
Newman M. E. J., Phys. Rev. E 67, 026126 (2003).10.1103/PhysRevE.67.026126 PubMed DOI
Newman M. E. J., Strogatz S. H., and Watts D. J., Phys. Rev. E 64, 026118 (2001).10.1103/PhysRevE.64.026118 PubMed DOI
Concrete and Abstract Voronoi Diagrams (Lecture Notes in Computer Science), edited by Klein R. (Springer, New York, 1990).
Timmer J., Phys. Rev. E 58, 5153 (1998).10.1103/PhysRevE.58.5153 DOI
Witt A., Kurths J., and Pikovsky A., Phys. Rev. E 58, 1800 (1998).10.1103/PhysRevE.58.1800 DOI
Rieke C., Mormann F., Andrzejak R. G., Kreuz T., David P., Elger C. E., and Lehnertz K., IEEE Trans. Biomed. Eng. 50, 634 (2003).10.1109/TBME.2003.810684 PubMed DOI
Faes L., Zhao H., Chon K. H., and Nollo G., IEEE Trans. Biomed. Eng. 56, 685 (2009).10.1109/TBME.2008.2009358 PubMed DOI
Bandt C. and Pompe B., Phys. Rev. Lett. 88, 174102 (2002).10.1103/PhysRevLett.88.174102 PubMed DOI
Northoff G., Qin P., and Nakao T., Trends Neurosci. 33, 277 (2010).10.1016/j.tins.2010.02.006 PubMed DOI
Smith S. M., Fox P. T., Miller K. L., Glahn D. C., Fox P. M., Mackay C. E., Filippini N., Watkins K. E., Toro R., Laird A. R., and Beckmann C. F., Proc. Natl. Acad. Sci. U.S.A. 106, 13040 (2009).10.1073/pnas.0905267106 PubMed DOI PMC
Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., and Sonuga-Barke E. J. S., Neurosci. Biobehav. Rev. 33, 279 (2009).10.1016/j.neubiorev.2008.09.002 PubMed DOI
Fornito A. and Bullmore E. T., Curr. Opin. Psychiatr. 23, 239 (2010).10.1097/YCO.0b013e328337d78d PubMed DOI
Stephan K. E., Kasper L., Harrison L. M., Daunizeau J., den Ouden H. E. M., Breakspear M., and Friston K. J., Neuroimage 42, 649 (2008).10.1016/j.neuroimage.2008.04.262 PubMed DOI PMC
Tackling the challenges of group network inference from intracranial EEG data
Causality in Reversed Time Series: Reversed or Conserved?
Network Inference and Maximum Entropy Estimation on Information Diagrams