A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
21468758
PubMed Central
PMC3109262
DOI
10.1007/s12223-011-0027-z
Knihovny.cz E-resources
- MeSH
- Survival Analysis MeSH
- Genes, Bacterial MeSH
- Bacterial Load MeSH
- Cytokines metabolism MeSH
- DNA, Bacterial genetics MeSH
- Virulence Factors genetics metabolism MeSH
- Disease Models, Animal MeSH
- Plague microbiology mortality pathology MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Rodent Diseases microbiology mortality pathology MeSH
- Plasmids analysis MeSH
- Lung microbiology MeSH
- Polymerase Chain Reaction MeSH
- Bacterial Outer Membrane Proteins genetics metabolism MeSH
- Body Weight MeSH
- Virulence MeSH
- Yersinia pestis genetics pathogenicity MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokines MeSH
- DNA, Bacterial MeSH
- Virulence Factors MeSH
- HmsF protein, Yersinia pestis MeSH Browser
- Bacterial Outer Membrane Proteins MeSH
We determined the role of Yersinia pestis virulence markers in an animal model of pneumonic plague. Eleven strains of Y. pestis were characterized using PCR assays to detect the presence of known virulence genes both encoded by the three plasmids as well as chromosomal markers. The virulence of all Y. pestis strains was compared in a mouse model for pneumonic plague. The presence of all known virulence genes correlated completely with virulence in the Balb/c mouse model. Strains which lacked HmsF initially exhibited visible signs of disease whereas all other strains (except wild-type strains) did not exhibit any disease signs. Forty-eight hours post-infection, mice which had received HmsF(-) strains regained body mass and were able to control infection; those infected with strains possessing a full complement of virulence genes suffered from fatal disease. The bacterial loads observed in the lung and other tissues reflected the observed clinical signs as did the cytokine changes measured in these animals. We can conclude that all known virulence genes are required for the establishment of pneumonic plague in mammalian animal models, the role of HmsF being of particular importance in disease progression.
See more in PubMed
Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology. 2008;154:1939–1948. doi: 10.1099/mic.0.2008/017335-0. PubMed DOI
Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Baze WB, Suarez G, Peterson JW, Chopra AK. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect. 2009;11:205–214. doi: 10.1016/j.micinf.2008.11.009. PubMed DOI
Anderson DM, Ciletti NA, Lee-Lewis H, Elli D, Segal J, DeBord KL, Overheim KA, Tretiakova M, Brubaker RR, Schneewind O. Pneumonic plague pathogenesis and immunity in Brown Norway rats. Am J Pathol. 2009;174:910–921. doi: 10.2353/ajpath.2009.071168. PubMed DOI PMC
Brubaker RR. Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol. 1969;98:1404–1406. PubMed PMC
Cornelis GR. Yersinia type III secretion: send in the effectors. J Cell Biol. 2002;158:401–408. doi: 10.1083/jcb.200205077. PubMed DOI PMC
Daskaleros PA, Payne SM. Congo red binding phenotype is associated with hemin binding and increased infectivity of Shigella flexneri in the HeLa cell model. Infect Immun. 1987;55:1393–1398. PubMed PMC
Garduno RA, Kay WW. Interaction of the fish pathogen Aeromonas salmonicida with rainbow trout macrophages. Infect Immun. 1992;60:4612–4620. PubMed PMC
Hare JM, McDonough KA. High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol. 1999;181:4896–4904. PubMed PMC
Holmstrom A, Petterson J, Rosqvist R, Hakansson S, Tafazoli F, Fallman M, Magnusson KE, Wolf-Watz H, Forsberg A. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Mol Microbiol. 1997;24:73–91. doi: 10.1046/j.1365-2958.1997.3211681.x. PubMed DOI
Juris SJ, Shao F, Dixon JE. Yersinia effectors target mammalian signalling pathways. Cell Microbiol. 2002;4:201–211. doi: 10.1046/j.1462-5822.2002.00182.x. PubMed DOI
Kaufmann SH. Immunity to intracellular bacteria. Ann Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. PubMed DOI
Li B, Yang R. Interaction between Yersinia pestis and the host immune system. Infect Immun. 2008;76:1804–1811. doi: 10.1128/IAI.01517-07. PubMed DOI PMC
Lillard JW, Jr, Bearden SW, Fetherston JD, Perry RD. The hemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology. 1999;145(Part 1):197–209. doi: 10.1099/13500872-145-1-197. PubMed DOI
Matero P, Pasanen T, Laukkanen R, Tissari P, Tarkka E, Vaara M, Skurnik M. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS. 2009;117:34–44. doi: 10.1111/j.1600-0463.2008.00013.x. PubMed DOI
Morris CJ, Earl JR, Trenam CW, Blake DR. Reactive oxygen species and iron—a dangerous partnership in inflammation. Int J Biochem Cell Biol. 1995;27:109–122. doi: 10.1016/1357-2725(94)00084-O. PubMed DOI
Navarro L, Alto NM, Dixon JE. Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol. 2005;8:21–27. doi: 10.1016/j.mib.2004.12.014. PubMed DOI
Perry RD, Fetherston JD. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev. 1997;10:35–66. PubMed PMC
Perry RD, Pendrak ML, Schuetz P. Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol. 1990;172:5929–5937. PubMed PMC
Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol. 2004;186:1638–1647. doi: 10.1128/JB.186.6.1638-1647.2004. PubMed DOI PMC
Prentice MB, Rahalison L. Plague. Lancet. 2007;369:1196–1207. doi: 10.1016/S0140-6736(07)60566-2. PubMed DOI
Ramirez K, Capozzo AV, Lloyd SA, Sztein MB, Nataro JP, Pasetti MF. Mucosally delivered Salmonella typhi expressing the Yersinia pestis F1 antigen elicits mucosal and systemic immunity early in life and primes the neonatal immune system for a vigorous anamnestic response to parenteral F1 boost. J Immunol. 2009;182:1211–1222. PubMed PMC
Sing A, Tvardovskaia N, Rost D, Kirschning CJ, Wagner H, Heesemann J. Contribution of toll-like receptors 2 and 4 in an oral Yersinia enterocolitica mouse infection model. Int J Med Microbiol. 2003;293:341–348. doi: 10.1078/1438-4221-00277. PubMed DOI
Smiley ST. Immune defense against pneumonic plague. Immunol Rev. 2008;225:256–271. doi: 10.1111/j.1600-065X.2008.00674.x. PubMed DOI PMC
Sodhi A, Sharma RK, Batra HV, Tuteja U. Recombinant fraction 1 protein of Yersinia pestis activates murine peritoneal macrophages in vitro. Cell Immunol. 2004;229:52–61. doi: 10.1016/j.cellimm.2004.05.003. PubMed DOI
Staggs TM, Fetherston JD, Perry RD. Pleiotropic effects of a Yersinia pestis fur mutation. J Bacteriol. 1994;176:7614–7624. PubMed PMC
Stugard CE, Daskaleros PA, Payne SM. A 101-kilodalton heme-binding protein associated with congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun. 1989;57:3534–3539. PubMed PMC
Tomaso H, Jacob D, Eickhoff M, Scholz HC, Al Dahouk S, Kattar MM, Reischl U, Plicka H, Olsen JS, Nikkari S, Matero P, Beuret C, Ciammaruconi A, Lista F, Gala JL, Broll H, Appel B, Sellek Cano RE, Ybarra D, Broekhuijsen M, Indra A, Petersen R, Neubauer H. Preliminary validation of real-time PCR assays for the identification of Yersinia pestis. Clin Chem Lab Med. 2008;6:1239–1244. doi: 10.1515/CCLM.2008.251. PubMed DOI
Vazquez-Torres A, Stevanin T, Jones-Carson J, Castor M, Read RC, Fang FC. Analysis of nitric oxide-dependent antimicrobial actions in macrophages and mice. Methods Enzymol. 2008;437:521–538. doi: 10.1016/S0076-6879(07)37026-2. PubMed DOI PMC
Viboud GI, Bliska JB. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Ann Rev Microbiol. 2005;59:69–89. doi: 10.1146/annurev.micro.59.030804.121320. PubMed DOI
Zauberman A, Tidhar A, Levy Y, Bar-Haim E, Halperin G, Flashner Y, Cohen S, Shafferman A, Mamroud E. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PLoS One. 2009;4:e5938. doi: 10.1371/journal.pone.0005938. PubMed DOI PMC