Specialized bark-gnawing beetles reveal phragmotic defence and subcortical ecology in the Cretaceous
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
National Natural Science Foundation of China
PubMed
40495817
PubMed Central
PMC12152752
DOI
10.1098/rspb.2025.1004
Knihovny.cz E-resources
- Keywords
- Cretaceous, beetle, defence, ecological interaction, phragmosis,
- MeSH
- Biological Evolution MeSH
- Coleoptera * anatomy & histology physiology classification MeSH
- Ecosystem MeSH
- Amber MeSH
- Predatory Behavior MeSH
- Fossils * anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Myanmar MeSH
- Names of Substances
- Amber MeSH
Ecological interactions are fundamental to understanding species' trophic relationships and the evolution of ecosystem functions. However, the fossil record seldom captures these intricate dynamics, as most fossils preserve individual organisms rather than the interactions that shaped ancient ecosystems. Here, we describe a new genus of bark-gnawing beetles (Trogossitidae), Rutrizoma gen. nov., from mid-Cretaceous amber in northern Myanmar. This fossil genus reveals a rare combination of predatory and antipredatory adaptations, shedding light on the ecological complexity of Mesozoic forest ecosystems. Rutrizoma has specialized morphological features, such as shortened elytra and unidentate mandibles, suggesting an active predatory lifestyle in narrow wood galleries. Interestingly, some morphological traits of Rutrizoma mirror those of its potential prey, particularly bostrichid beetles, from the same amber deposit. One such trait is its specialized abdominal declivity, which probably functioned as a protective shield against predators and competitors, representing marked convergence with the elytral declivity of other subcortical beetles, such as bark and ambrosia beetles (Scolytinae and Platypodinae) and Bostrichidae. The presence of phoretic mites associated with Rutrizoma, along with co-preserved bostrichid prey, underscores the complex community dynamics beneath Cretaceous tree bark. This finding reveals a subcortical ecosystem that parallels modern ecological interactions.
Bristol Palaeobiology Group School of Earth Sciences University of Bristol Bristol BS8 1TQ UK
Department of Entomology Moravian Museum 627 00 Brno Czech Republic
Division of Invertebrate Zoology American Museum of Natural History New York NY 10024 USA
New Zealand Arthropod Collection Manaaki Whenua Landcare Research Auckland 1072 New Zealand
School of Biological Sciences University of Auckland Auckland 1072 New Zealand
See more in PubMed
Sugiura S. 2020. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337. ( 10.1111/ens.12423) DOI
Labandeira CC. 2002. Paleobiology of predators, parasitoids, and parasites: death and accomodation in the fossil record of continental invertebrates. Paleontol. Soc. Pap. 8, 211–250. ( 10.1017/S1089332600001108) DOI
Gao T, Shih C, Ren D. 2021. Behaviors and interactions of insects in mid-Mesozoic ecosystems of northeastern China. Annu. Rev. Entomol. 66, 337–354. ( 10.1146/annurev-ento-072720-095043) PubMed DOI
Wang B, Xu C, Jarzembowski EA. 2022. Ecological radiations of insects in the Mesozoic. Trends Ecol. Evol. 37, 529–540. ( 10.1016/j.tree.2022.02.007) PubMed DOI
Haug C, Haug JT, Haug GT, Müller P, Zippel A, Kiesmüller C, Gauweiler J, Hörnig MK. 2024. Fossils in Myanmar amber demonstrate the diversity of anti-predator strategies of Cretaceous holometabolan insect larvae. iScience 27, 108621. ( 10.1016/j.isci.2023.108621) PubMed DOI PMC
Yin Z-W, Parker J, Cai C-Y, Huang D-Y, Li L-Z. 2018. A new stem bythinine in Cretaceous Burmese amber and early evolution of specialized predatory behaviour in pselaphine rove beetles (Coleoptera: Staphylinidae). J. Syst. Palaeontol. 16, 531–541. ( 10.1080/14772019.2017.1313790) DOI
Cai C, Clarke DJ, Yin Z, Fu Y, Huang D. 2019. A specialized prey-capture apparatus in mid-Cretaceous rove beetles. Curr. Biol. 29, R116–R117. ( 10.1016/j.cub.2019.01.002) PubMed DOI
Li Y-D, Tihelka E, Engel MS, Huang D, Cai C. 2024. Specialized springtail predation by Loricera beetles: an example of evolutionary stasis across the K-Pg extinction. Innovation 5, 100601. ( 10.1016/j.xinn.2024.100601) PubMed DOI PMC
Li Y-D, et al. 2024. Description of adult and larval Loricera from mid-Cretaceous Kachin amber (Coleoptera: Carabidae). Palaeoentomology 7, 265–276. ( 10.11646/palaeoentomology.7.2.10) DOI
Yin Z-W, Cai C-Y, Huang D-Y, Li L-Z. 2017. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98. ( 10.1038/s41598-017-00187-8) PubMed DOI PMC
Delclòs X, Peñalver E, Arillo A, Engel MS, Nel A, Azar D, Ross A. 2016. New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar. Cretac. Res. 60, 91–108. ( 10.1016/j.cretres.2015.11.001) DOI
Li X-R, Huang D. 2018. A new praying mantis from middle Cretaceous Burmese amber exhibits bilateral asymmetry of forefemoral spination (Insecta: Dictyoptera). Cretac. Res. 91, 269–273. ( 10.1016/j.cretres.2018.06.019) DOI
Lu X, Wang B, Zhang W, Ohl M, Engel MS, Liu X. 2020. Cretaceous diversity and disparity in a lacewing lineage of predators (Neuroptera: Mantispidae). Proc. R. Soc. B 287, 20200629. ( 10.1098/rspb.2020.0629) PubMed DOI PMC
Nakamine H, Yamamoto S, Takahashi Y. 2020. Hidden diversity of small predators: new thorny lacewings from mid-Cretaceous amber from northern Myanmar (Neuroptera: Rhachiberothidae: Paraberothinae). Geol. Mag. 157, 1149–1175. ( 10.1017/S0016756820000205) DOI
Shi C, Yang Q, Shih C, Labandeira CC, Pang H, Ren D. 2020. Cretaceous mantid lacewings with specialized raptorial forelegs illuminate modification of prey capture (Insecta: Neuroptera). Zool. J. Linn. Soc. 190, 1054–1070. ( 10.1093/zoolinnean/zlaa096) DOI
Chen S, Yin X, Lin X, Shih C, Zhang R, Gao T, Ren D. 2018. Stick insect in Burmese amber reveals an early evolution of lateral lamellae in the Mesozoic. Proc. R. Soc. B 285, 20180425. ( 10.1098/rspb.2018.0425) PubMed DOI PMC
Li Y, Li Y-D, Wang Y-D, Schneider H, Shi G-L. 2022. Re-appraisal of lacewing mimicry of liverworts from the mid-Cretaceous Kachin amber, Myanmar with a description of Selaginella cretacea sp. nov. (Selaginellales, Selaginellaceae). Cretac. Res. 133, 105143. ( 10.1016/j.cretres.2022.105143) DOI
Xu C, et al. 2022. Widespread mimicry and camouflage among mid-Cretaceous insects. Gondwana Res. 101, 94–102. ( 10.1016/j.gr.2021.07.025) DOI
Yang H, Engel MS, Zhang W, Ren D, Gao T. 2022. Mesozoic insect fossils reveal the early evolution of twig mimicry. Sci. Bull. 67, 1641–1643. ( 10.1016/j.scib.2022.07.007) PubMed DOI
Wang B, et al. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Sci. Adv. 2, e1501918. ( 10.1126/sciadv.1501918) PubMed DOI PMC
Badano D, Engel MS, Basso A, Wang B, Cerretti P. 2018. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nat. Commun. 9, 3257. ( 10.1038/s41467-018-05484-y) PubMed DOI PMC
Hörnig MK, Kiesmüller C, Müller P, Haug C, Haug JT. 2020. A new glimpse on trophic interactions of 100-million-year old lacewing larvae. Acta Palaeontol. Pol. 65, 777–786. ( 10.4202/app.00677.2019) DOI
Kiesmüller C, Haug JT, Müller P, Hörnig MK. 2022. Debris-carrying behaviour of bark lice immatures preserved in 100 million years old amber. PalZ 96, 231–258. ( 10.1007/s12542-021-00567-6) DOI
Jiang T, Szwedo J, Wang B. 2019. A unique camouflaged mimarachnid planthopper from mid-Cretaceous Burmese amber. Sci. Rep. 9, 13112. ( 10.1038/s41598-019-49414-4) PubMed DOI PMC
Grimaldi DA. 2016. Diverse orthorrhaphan flies (Insecta: Diptera: Brachycera) in amber from the Cretaceous of Myanmar: brachycera in Cretaceous amber, part VII. Bull. Am. Mus. Nat. Hist. 408, 1–131. ( 10.1206/0003-0090-408.1.1) DOI
Tihelka E, Engel MS, Huang D, Cai C. 2020. Mimicry in Cretaceous bugs. iScience 23, 101280. ( 10.1016/j.isci.2020.101280) PubMed DOI PMC
Luo C, et al. 2022. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: a critical review. Earth Sci. Rev. 225, 103914. ( 10.1016/j.earscirev.2021.103914) DOI
Liu Q, Lu X, Zhang Q, Chen J, Zheng X, Zhang W, Liu X, Wang B. 2018. High niche diversity in Mesozoic pollinating lacewings. Nat. Commun. 9, 3793. ( 10.1038/s41467-018-06120-5) PubMed DOI PMC
Poinar GO Jr, Marshall CJ, Buckley R. 2007. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669. ( 10.1007/s10886-007-9343-9) PubMed DOI
Poinar G, Fanti F. 2016. New fossil soldier beetles (Coleoptera: Cantharidae) in Burmese, Baltic, and Dominican amber. Palaeodiversity 9, 1–7. ( 10.18476/pale.v9.a1) DOI
Li Y-D, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288, 20202730. ( 10.1098/rspb.2020.2730) PubMed DOI PMC
Powell GS, et al. 2022. Beetle bioluminescence outshines extant aerial predators. Proc. R. Soc. B 289, 20220821. ( 10.1098/rspb.2022.0821) PubMed DOI PMC
Latreille P. 1804. Histoire naturelle, générale et particulière des crustacés et des insectes. Tome onzième. Paris, France: F. Dufart. ( 10.5962/bhl.title.15764) DOI
International Commission on Zoological Nomenclature . 1999. International code of zoological nomenclature, 4th edn. London, UK: International Trust for Zoological Nomenclature. PubMed PMC
Kippenhan MG. 2023. A new species of Nemozoma Latreille (Coleoptera: Cleroidea: Trogossitidae) from Honduras. Coleopt. Bull. 77, 619–628. ( 10.1649/0010-065X-77.4.619) DOI
Cai C, Tihelka E, Pan Y, Yin Z, Jiang R, Xia F, Huang D. 2020. Structural colours in diverse Mesozoic insects. Proc. R. Soc. B 287, 20200301. ( 10.1098/rspb.2020.0301) PubMed DOI PMC
Kolibáč J. 2013. Trogossitidae: a review of the beetle family, with a catalogue and keys. ZooKeys 366, 1–194. ( 10.3897/zookeys.366.6172) PubMed DOI PMC
Kolibáč J. 2006. A review of the Trogossitidae. Part 2: larval morphology, phylogeny and taxonomy (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 28, 105–153.
Kolibáč J. 2005. A review of the Trogossitidae. Part 1: morphology of the genera (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 27, 39–159.
Kolibáč J. 2014. Nemozoma gymnosternalis sp. nov., a new anomalous species of Trogossitidae from Brazil. Zootaxa 3815, 417–427. ( 10.11646/zootaxa.3815.3.7) PubMed DOI
Kippenhan MG. 2023. The taxonomic status of two species of North American Trogossitidae (Coleoptera: Cleroidea) described by Roger Dajoz. Coleopt. Bull. 77, 278–282. ( 10.1649/0010-065X-77.2.278) DOI
Hinson KR, Buss RJ. 2016. Observations on the life history of Nemozoma championi (Wickham) (Coleoptera: Trogossitidae). Coleopt. Bull. 70, 305–308. ( 10.1649/0010-065X-70.2.305) DOI
Crowson R. 1981. The biology of the Coleoptera. London, UK: Academic Press.
Liu Z, Tihelka E, McElrath TC, Yamamoto S, Ślipiński A, Wang B, Ren D, Pang H. 2020. New minute clubbed beetles (Coleoptera, Monotomidae, Lenacini) from mid-Cretaceous amber of northern Myanmar. Cretac. Res. 107, 104255. ( 10.1016/j.cretres.2019.104255) DOI
Ôhara M. 1994. A revision of the superfamily Histeroidea of Japan. Insecta Matsumurana (N. S.) 51, 1–283.
Gomy Y. 2019. Sur la présence d’un Niponiinae à Madagascar: Lemurinius sicardi n. gen. n. sp. (Coleoptera, Histeridae) (Cinquième contribution à la connaissance des Histeridae de Madagascar). Faunitaxys 7, 16.
Dippel C. 1996. Investigations on the life history of Nemosoma elongatum L. (Col., Ostomidae), a bark beetle predator. J. Appl. Entomol. 120, 391–395. ( 10.1111/j.1439-0418.1996.tb01626.x) DOI
Sakamoto JM. 2007. Notes on the occurrence of Nemosoma attenuatum Van Dyke, 1915 (Coleoptera: Trogossitidae), in California with a literature review and museum survey of Nemosoma spp. Pan-Pac. Entomol. 83, 342–351. ( 10.3956/2007-19.1) DOI
Holuša J, Resnerová K, Dvořáková B, Hradecký J, Šipoš J, Fiala T. 2025. The relationship between Nemozoma elongatum (Coleoptera: Trogossitidae) and its primary bark-beetle prey-species. Ann. For. Sci. 82, 11. ( 10.1186/s13595-025-01280-z) DOI
Kolibáč J. 2008. Morphology, taxonomy and phylogeny of Phloiophilus edwardsi Stephens, 1830 (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 30, 105–133.
Gimmel ML, Ferro ML. 2018. General overview of saproxylic Coleoptera. In Saproxylic insects: diversity, ecology and conservation (ed. Ulyshen MD), pp. 51–128. Cham: Springer. ( 10.1007/978-3-319-75937-1_2) DOI
Labandeira CC, Lepage BA, Johnson AH. 2001. A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? Am. J. Bot. 88, 2026–2039. ( 10.2307/3558429) PubMed DOI
Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nat. Commun. 8, 556. ( 10.1038/s41467-017-00696-0) PubMed DOI PMC
Feng Z, Wang J, Zhou WM, Wan ML, Pšenička J. 2021. Plant–insect interactions in the early Permian Wuda Tuff Flora, North China. Rev. Palaeobot. Palynol. 294, 104269. ( 10.1016/j.revpalbo.2020.104269) DOI
Mikuláš R, Milàn J, Genise JF, Bertling M, Bromley RG. 2020. An insect boring in an Early Cretaceous wood from Bornholm, Denmark. Ichnos 27, 284–289. ( 10.1080/10420940.2020.1744587) DOI
Legalov AA, Háva J. 2020. The first record of subfamily Polycaoninae (Coleoptera; Bostrichidae) from mid-Cretaceous Burmese amber. Cretac. Res. 116, 104620. ( 10.1016/j.cretres.2020.104620) DOI
Li Y-D, Philips TK, Huang D-Y, Cai C-Y. 2023. Earliest fossil record of Eucradinae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Ptinidae). Bull. Geosci. 98, 171–180. ( 10.3140/bull.geosci.1876) DOI
Li Y-D, Philips TK, Huang D-Y, Cai C-Y. 2025. Toxesbium gen. nov., the first definitive member of Ernobiinae from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptinidae). PalZ 99, 25–33. ( 10.1007/s12542-025-00715-2) DOI
Peng Y, Jiang R-x, Shi C, Song W, Long X, Engel MS, Wang S. 2022. Alitrepaninae, a new subfamily of auger beetles from mid-Cretaceous Kachin amber of northern Myanmar (Coleoptera: Bostrichidae). Cretac. Res. 137, 105244. ( 10.1016/j.cretres.2022.105244) DOI
Legalov AA, Háva J. 2022. Diversity of auger beetles (Coleoptera: Bostrichidae) in the mid-Cretaceous forests with description of seven new species. Diversity 14, 1114. ( 10.3390/d14121114) DOI
Wang H, Peng Y, Lin Q, Tao R, Zhang Z, Wang S. 2025. Two new species of the extinct subfamily Alitrepaninae (Coleoptera: Bostrichidae) from the Upper Cretaceous (Cenomanian) Kachin amber in northern Myanmar. Cretac. Res. 167, 106051. ( 10.1016/j.cretres.2024.106051) DOI
Rykken JJ, Hanson T. 1999. A guide to common bark beetles (Coleoptera: Scolytidae) endemic to the northeastern United States. Morgantown, WV: USDA, Forest Service, Forest Health Technology Enterprise Team.
Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD. 2015. Morphology, taxonomy, and phylogenetics of bark beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 41–84. London, UK: Academic Press. ( 10.1016/B978-0-12-417156-5.00002-2) DOI
Smith SM, Beaver RA, Cognato AI. 2020. A monograph of the Xyleborini (Coleoptera, Curculionidae, Scolytinae) of the Indochinese Peninsula (except Malaysia) and China. ZooKeys 983, 1–442. ( 10.3897/zookeys.983.52630) PubMed DOI PMC
Kirkendall LR, Atkinson TH. 2024. What we do and don’t know about New World pinhole borers (Coleoptera, Curculionidae, Platypodinae). Nor. J. Entomol. 25–92.
Lawrence JF. 1980. A new genus of Indo-Australian Gempylodini with notes on the constitution of the Colydiidae (Coleoptera). Aust. J. Entomol. 19, 293–310. ( 10.1111/j.1440-6055.1980.tb00989.x) DOI
Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 85–156. London: Academic Press. ( 10.1016/B978-0-12-417156-5.00003-4) DOI
Newton AF, Thayer MK, Ashe JS, Chandler DS. 2000. Staphylinidae Latreille, 1802. In American beetles vol 1: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia (eds Arnett RH Jr, Thomas MC), pp. 272–418. Boca Raton, FL: CRC Press.
Kirejtshuk AG, Kovalev AV. 2022. Monograph on the Cillaeinae (Coleoptera: Nitidulidae) from the Australian Region with comments on the taxonomy of the subfamily. Zootaxa 5103, 1–133. ( 10.11646/zootaxa.5103.1.1) PubMed DOI
Goczał J, Beutel RG, Gimmel ML, Kundrata R. 2024. When a key innovation becomes redundant: patterns, drivers and consequences of elytral reduction in Coleoptera. Syst. Entomol. 49, 193–220. ( 10.1111/syen.12617) DOI
Wheeler WM. 1927. The physiognomy of insects. Q. Rev. Biol. 2, 1–36. ( 10.1086/394264) DOI
Scheffrahn RH, Krecek J. 1999. Termites of the genus Cryptotermes banks (Isoptera: Kalotermitidae) from the West Indies. Insecta Mundi 13, 111–171.
Bishoff MJ, Peng L, Zang H-m, Morse JC. 2023. Defensive phragmosis and cathaptosis in Trichoptera larvae. Contrib. Entomol. 73, 209–218. ( 10.3897/contrib.entomol.73.e110394) DOI
Wilson EO, Hölldobler B. 1985. Caste-specific techniques of defense in the polymorphic ant Pheidole embolopyx (Hymenoptera: Formicidae). Insectes Soc. 32, 3–22. ( 10.1007/BF02233223) DOI
Six DL. 2012. Ecological and evolutionary determinants of bark beetle–fungus symbioses. Insects 3, 339–366. ( 10.3390/insects3010339) PubMed DOI PMC
Peris D, Delclòs X, Jordal B. 2021. Origin and evolution of fungus farming in wood-boring Coleoptera: a palaeontological perspective. Biol. Rev. 96, 2476–2488. ( 10.1111/brv.12763) PubMed DOI
Klepzig KD, Moser J, Lombardero F, Hofstetter R, Ayres M. 2001. Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis 30, 83–96.
Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. 2008. Bacterial protection of beetle-fungus mutualism. Science 322, 63. ( 10.1126/science.1160423) PubMed DOI PMC
Hofstetter RW, Moser JC, Blomquist SR. 2013. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi. In The ophiostomatoid fungi: expanding frontiers (eds Seifert K, de Beer Z, Wingfield M), pp. 165–176. Utrecht, The Netherlands: CBS-KNAW Biodivers. Cent.
Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD. 2015. Symbiotic associations of bark beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 209–245. London, UK: Academic Press. ( 10.1016/B978-0-12-417156-5.00006-X) DOI
Wegensteiner R, Wermelinger B, Herrmann M. 2015. Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 247–304. London: Academic Press.
Hofstetter RW, Moser JC. 2014. The role of mites in insect–fungus associations. Annu. Rev. Entomol. 59, 537–557. ( 10.1146/annurev-ento-011613-162039) PubMed DOI
Li Y-D, Peris D, Yamamoto S, Hsiao Y, Newton AF, Cai C-Y. 2022. Revisiting the Raractocetus Fossils from Mesozoic and Cenozoic amber deposits (Coleoptera: Lymexylidae). Insects 13, 768. ( 10.3390/insects13090768) PubMed DOI PMC
Dunlop JA, Kontschán J, Zwanzig M. 2013. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften 100, 337–344. ( 10.1007/s00114-013-1031-8) PubMed DOI
Joharchi O, Vorontsov DD, Walter DE. 2021. Oldest determined record of a mesostigmatic mite (Acari: Mesostigmata: Sejidae) in Cretaceous Burmese amber. Acarologia 61, 641–649. ( 10.24349/goj5-BZms) DOI
Ross AJ. 2024. Complete checklist of Burmese (Myanmar) amber taxa 2023. Mesozoic 1, 21–57. ( 10.11646/mesozoic.1.1.4) DOI
Bajerlein D, Błoszyk J, Halliday B, Konwerski S. 2024. Hitchhiking through life: a review of phoresy in Uropodina mites (Parasitiformes: Mesostigmata). Eur. Zool. J. 91, 31–63. ( 10.1080/24750263.2023.2288847) DOI
Khaustov AA, Vorontsov DD, Lindquist EE. 2024. The oldest evidence of symbiosis between mites and fungi with description of a new genus and species of Trochometridiidae (Acari: Heterostigmata) from Cretaceous amber. Syst. Appl. Acarol. 29, 475–500. ( 10.11158/saa.29.4.3) DOI
Perotti MA, Young DK, Braig HR. 2016. The ghost sex-life of the paedogenetic beetle Micromalthus debilis. Sci. Rep. 6, 27364. ( 10.1038/srep27364) PubMed DOI PMC
Simpson GG. 1984. Tempo and mode in evolution. New York, NY: Columbia University Press.
Cai C, Ślipiński A, Leschen RAB, Yin Z, Zhuo D, Huang D. 2018. The first Mesozoic Jacobson’s beetle (Coleoptera: Jacobsoniidae) in Cretaceous Burmese amber and biogeographical stasis. J. Syst. Palaeontol. 16, 543–550. ( 10.1080/14772019.2017.1314388) DOI
Li Y-D, Jin Z-Y, Ślipiński A, Huang D-Y, Cai C-Y. 2024. A new species of the extant genus Bulasconotus from mid-Cretaceous Kachin amber (Coleoptera: Zopheridae: Colydiinae). Pap. Avulsos Zool. 64, e202464015. ( 10.11606/1807-0205/2024.64.015) DOI
Fu Y-Z, Li Y-D, Su Y-T, Cai C-Y, Huang D-Y. 2021. Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology 4, 266–278. ( 10.11646/palaeoentomology.4.3.14) DOI
Li Y-D, Tihelka E, Leschen RAB, Yu Y, Ślipiński A, Pang H, Huang D, Kolibáč J, Cai C. 2021. An exquisitely preserved tiny bark‐gnawing beetle (Coleoptera: Trogossitidae) from mid‐Cretaceous Burmese amber and the phylogeny of Trogossitidae. J. Zool. Syst. Evol. Res. 59, 1939–1950. ( 10.1111/jzs.12515) DOI
Li Y-D, Kolibáč J, Liu Z-H, Ślipiński A, Yamamoto S, Yu Y-L, Zhang W-T, Cai C-Y. 2024. Foveapeltis gen. nov., an unusual cleroid genus with large hypomeral cavities from mid‐Cretaceous amber (Coleoptera: Cleroidea). Ecol. Evol. 14, e11589. ( 10.1002/ece3.11589) PubMed DOI PMC
R Core Team . 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Smith MR. 2023. TreeSearch: morphological phylogenetic analysis in R. R J. 14/4, 305–315. ( 10.32614/RJ-2023-019) DOI
Goloboff PA, Torres A, Arias JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437. ( 10.1111/cla.12205) PubMed DOI
Smith MR. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol. Lett. 15, 20180632. ( 10.1098/rsbl.2018.0632) PubMed DOI PMC
Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. ( 10.1093/nar/gkae268) PubMed DOI PMC
Li YD, Leschen RAB, Kolibáč J, Engel MS, Zhang ZQ, Yu Y, Huang D, Cai C. 2025. Supplementary material from: Specialized bark-gnawing beetles reveal phragmotic defence and subcortical ecology in the Cretaceous. Figshare. ( 10.6084/m9.figshare.c.7829039) PubMed DOI PMC
Li YD, Leschen RAB, Kolibáč J, Engel MS, Zhang ZQ, Yu Y, Huang D, Cai C. 2025. Confocal and micro-CT data of Rutrizoma spp. Zenodo. ( 10.5281/zenodo.15186362) DOI
Li YD, Leschen RAB, Kolibáč J, Engel M, Zhang ZQ, Yu Yet al. 2025. Supplementary material from: Specialized bark-gnawing beetles reveal phragmotic defense and subcortical ecology in the Cretaceous. Figshare. ( 10.6084/m9.figshare.c.7829039) PubMed DOI PMC
Specialized bark-gnawing beetles reveal phragmotic defence and subcortical ecology in the Cretaceous