• This record comes from PubMed

Specialized bark-gnawing beetles reveal phragmotic defence and subcortical ecology in the Cretaceous

. 2025 Jun ; 292 (2048) : 20251004. [epub] 20250611

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
National Natural Science Foundation of China

Ecological interactions are fundamental to understanding species' trophic relationships and the evolution of ecosystem functions. However, the fossil record seldom captures these intricate dynamics, as most fossils preserve individual organisms rather than the interactions that shaped ancient ecosystems. Here, we describe a new genus of bark-gnawing beetles (Trogossitidae), Rutrizoma gen. nov., from mid-Cretaceous amber in northern Myanmar. This fossil genus reveals a rare combination of predatory and antipredatory adaptations, shedding light on the ecological complexity of Mesozoic forest ecosystems. Rutrizoma has specialized morphological features, such as shortened elytra and unidentate mandibles, suggesting an active predatory lifestyle in narrow wood galleries. Interestingly, some morphological traits of Rutrizoma mirror those of its potential prey, particularly bostrichid beetles, from the same amber deposit. One such trait is its specialized abdominal declivity, which probably functioned as a protective shield against predators and competitors, representing marked convergence with the elytral declivity of other subcortical beetles, such as bark and ambrosia beetles (Scolytinae and Platypodinae) and Bostrichidae. The presence of phoretic mites associated with Rutrizoma, along with co-preserved bostrichid prey, underscores the complex community dynamics beneath Cretaceous tree bark. This finding reveals a subcortical ecosystem that parallels modern ecological interactions.

See more in PubMed

Sugiura S. 2020. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337. ( 10.1111/ens.12423) DOI

Labandeira CC. 2002. Paleobiology of predators, parasitoids, and parasites: death and accomodation in the fossil record of continental invertebrates. Paleontol. Soc. Pap. 8, 211–250. ( 10.1017/S1089332600001108) DOI

Gao T, Shih C, Ren D. 2021. Behaviors and interactions of insects in mid-Mesozoic ecosystems of northeastern China. Annu. Rev. Entomol. 66, 337–354. ( 10.1146/annurev-ento-072720-095043) PubMed DOI

Wang B, Xu C, Jarzembowski EA. 2022. Ecological radiations of insects in the Mesozoic. Trends Ecol. Evol. 37, 529–540. ( 10.1016/j.tree.2022.02.007) PubMed DOI

Haug C, Haug JT, Haug GT, Müller P, Zippel A, Kiesmüller C, Gauweiler J, Hörnig MK. 2024. Fossils in Myanmar amber demonstrate the diversity of anti-predator strategies of Cretaceous holometabolan insect larvae. iScience 27, 108621. ( 10.1016/j.isci.2023.108621) PubMed DOI PMC

Yin Z-W, Parker J, Cai C-Y, Huang D-Y, Li L-Z. 2018. A new stem bythinine in Cretaceous Burmese amber and early evolution of specialized predatory behaviour in pselaphine rove beetles (Coleoptera: Staphylinidae). J. Syst. Palaeontol. 16, 531–541. ( 10.1080/14772019.2017.1313790) DOI

Cai C, Clarke DJ, Yin Z, Fu Y, Huang D. 2019. A specialized prey-capture apparatus in mid-Cretaceous rove beetles. Curr. Biol. 29, R116–R117. ( 10.1016/j.cub.2019.01.002) PubMed DOI

Li Y-D, Tihelka E, Engel MS, Huang D, Cai C. 2024. Specialized springtail predation by Loricera beetles: an example of evolutionary stasis across the K-Pg extinction. Innovation 5, 100601. ( 10.1016/j.xinn.2024.100601) PubMed DOI PMC

Li Y-D, et al. 2024. Description of adult and larval Loricera from mid-Cretaceous Kachin amber (Coleoptera: Carabidae). Palaeoentomology 7, 265–276. ( 10.11646/palaeoentomology.7.2.10) DOI

Yin Z-W, Cai C-Y, Huang D-Y, Li L-Z. 2017. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98. ( 10.1038/s41598-017-00187-8) PubMed DOI PMC

Delclòs X, Peñalver E, Arillo A, Engel MS, Nel A, Azar D, Ross A. 2016. New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar. Cretac. Res. 60, 91–108. ( 10.1016/j.cretres.2015.11.001) DOI

Li X-R, Huang D. 2018. A new praying mantis from middle Cretaceous Burmese amber exhibits bilateral asymmetry of forefemoral spination (Insecta: Dictyoptera). Cretac. Res. 91, 269–273. ( 10.1016/j.cretres.2018.06.019) DOI

Lu X, Wang B, Zhang W, Ohl M, Engel MS, Liu X. 2020. Cretaceous diversity and disparity in a lacewing lineage of predators (Neuroptera: Mantispidae). Proc. R. Soc. B 287, 20200629. ( 10.1098/rspb.2020.0629) PubMed DOI PMC

Nakamine H, Yamamoto S, Takahashi Y. 2020. Hidden diversity of small predators: new thorny lacewings from mid-Cretaceous amber from northern Myanmar (Neuroptera: Rhachiberothidae: Paraberothinae). Geol. Mag. 157, 1149–1175. ( 10.1017/S0016756820000205) DOI

Shi C, Yang Q, Shih C, Labandeira CC, Pang H, Ren D. 2020. Cretaceous mantid lacewings with specialized raptorial forelegs illuminate modification of prey capture (Insecta: Neuroptera). Zool. J. Linn. Soc. 190, 1054–1070. ( 10.1093/zoolinnean/zlaa096) DOI

Chen S, Yin X, Lin X, Shih C, Zhang R, Gao T, Ren D. 2018. Stick insect in Burmese amber reveals an early evolution of lateral lamellae in the Mesozoic. Proc. R. Soc. B 285, 20180425. ( 10.1098/rspb.2018.0425) PubMed DOI PMC

Li Y, Li Y-D, Wang Y-D, Schneider H, Shi G-L. 2022. Re-appraisal of lacewing mimicry of liverworts from the mid-Cretaceous Kachin amber, Myanmar with a description of Selaginella cretacea sp. nov. (Selaginellales, Selaginellaceae). Cretac. Res. 133, 105143. ( 10.1016/j.cretres.2022.105143) DOI

Xu C, et al. 2022. Widespread mimicry and camouflage among mid-Cretaceous insects. Gondwana Res. 101, 94–102. ( 10.1016/j.gr.2021.07.025) DOI

Yang H, Engel MS, Zhang W, Ren D, Gao T. 2022. Mesozoic insect fossils reveal the early evolution of twig mimicry. Sci. Bull. 67, 1641–1643. ( 10.1016/j.scib.2022.07.007) PubMed DOI

Wang B, et al. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Sci. Adv. 2, e1501918. ( 10.1126/sciadv.1501918) PubMed DOI PMC

Badano D, Engel MS, Basso A, Wang B, Cerretti P. 2018. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nat. Commun. 9, 3257. ( 10.1038/s41467-018-05484-y) PubMed DOI PMC

Hörnig MK, Kiesmüller C, Müller P, Haug C, Haug JT. 2020. A new glimpse on trophic interactions of 100-million-year old lacewing larvae. Acta Palaeontol. Pol. 65, 777–786. ( 10.4202/app.00677.2019) DOI

Kiesmüller C, Haug JT, Müller P, Hörnig MK. 2022. Debris-carrying behaviour of bark lice immatures preserved in 100 million years old amber. PalZ 96, 231–258. ( 10.1007/s12542-021-00567-6) DOI

Jiang T, Szwedo J, Wang B. 2019. A unique camouflaged mimarachnid planthopper from mid-Cretaceous Burmese amber. Sci. Rep. 9, 13112. ( 10.1038/s41598-019-49414-4) PubMed DOI PMC

Grimaldi DA. 2016. Diverse orthorrhaphan flies (Insecta: Diptera: Brachycera) in amber from the Cretaceous of Myanmar: brachycera in Cretaceous amber, part VII. Bull. Am. Mus. Nat. Hist. 408, 1–131. ( 10.1206/0003-0090-408.1.1) DOI

Tihelka E, Engel MS, Huang D, Cai C. 2020. Mimicry in Cretaceous bugs. iScience 23, 101280. ( 10.1016/j.isci.2020.101280) PubMed DOI PMC

Luo C, et al. 2022. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: a critical review. Earth Sci. Rev. 225, 103914. ( 10.1016/j.earscirev.2021.103914) DOI

Liu Q, Lu X, Zhang Q, Chen J, Zheng X, Zhang W, Liu X, Wang B. 2018. High niche diversity in Mesozoic pollinating lacewings. Nat. Commun. 9, 3793. ( 10.1038/s41467-018-06120-5) PubMed DOI PMC

Poinar GO Jr, Marshall CJ, Buckley R. 2007. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669. ( 10.1007/s10886-007-9343-9) PubMed DOI

Poinar G, Fanti F. 2016. New fossil soldier beetles (Coleoptera: Cantharidae) in Burmese, Baltic, and Dominican amber. Palaeodiversity 9, 1–7. ( 10.18476/pale.v9.a1) DOI

Li Y-D, Kundrata R, Tihelka E, Liu Z, Huang D, Cai C. 2021. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B 288, 20202730. ( 10.1098/rspb.2020.2730) PubMed DOI PMC

Powell GS, et al. 2022. Beetle bioluminescence outshines extant aerial predators. Proc. R. Soc. B 289, 20220821. ( 10.1098/rspb.2022.0821) PubMed DOI PMC

Latreille P. 1804. Histoire naturelle, générale et particulière des crustacés et des insectes. Tome onzième. Paris, France: F. Dufart. ( 10.5962/bhl.title.15764) DOI

International Commission on Zoological Nomenclature . 1999. International code of zoological nomenclature, 4th edn. London, UK: International Trust for Zoological Nomenclature. PubMed PMC

Kippenhan MG. 2023. A new species of Nemozoma Latreille (Coleoptera: Cleroidea: Trogossitidae) from Honduras. Coleopt. Bull. 77, 619–628. ( 10.1649/0010-065X-77.4.619) DOI

Cai C, Tihelka E, Pan Y, Yin Z, Jiang R, Xia F, Huang D. 2020. Structural colours in diverse Mesozoic insects. Proc. R. Soc. B 287, 20200301. ( 10.1098/rspb.2020.0301) PubMed DOI PMC

Kolibáč J. 2013. Trogossitidae: a review of the beetle family, with a catalogue and keys. ZooKeys 366, 1–194. ( 10.3897/zookeys.366.6172) PubMed DOI PMC

Kolibáč J. 2006. A review of the Trogossitidae. Part 2: larval morphology, phylogeny and taxonomy (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 28, 105–153.

Kolibáč J. 2005. A review of the Trogossitidae. Part 1: morphology of the genera (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 27, 39–159.

Kolibáč J. 2014. Nemozoma gymnosternalis sp. nov., a new anomalous species of Trogossitidae from Brazil. Zootaxa 3815, 417–427. ( 10.11646/zootaxa.3815.3.7) PubMed DOI

Kippenhan MG. 2023. The taxonomic status of two species of North American Trogossitidae (Coleoptera: Cleroidea) described by Roger Dajoz. Coleopt. Bull. 77, 278–282. ( 10.1649/0010-065X-77.2.278) DOI

Hinson KR, Buss RJ. 2016. Observations on the life history of Nemozoma championi (Wickham) (Coleoptera: Trogossitidae). Coleopt. Bull. 70, 305–308. ( 10.1649/0010-065X-70.2.305) DOI

Crowson R. 1981. The biology of the Coleoptera. London, UK: Academic Press.

Liu Z, Tihelka E, McElrath TC, Yamamoto S, Ślipiński A, Wang B, Ren D, Pang H. 2020. New minute clubbed beetles (Coleoptera, Monotomidae, Lenacini) from mid-Cretaceous amber of northern Myanmar. Cretac. Res. 107, 104255. ( 10.1016/j.cretres.2019.104255) DOI

Ôhara M. 1994. A revision of the superfamily Histeroidea of Japan. Insecta Matsumurana (N. S.) 51, 1–283.

Gomy Y. 2019. Sur la présence d’un Niponiinae à Madagascar: Lemurinius sicardi n. gen. n. sp. (Coleoptera, Histeridae) (Cinquième contribution à la connaissance des Histeridae de Madagascar). Faunitaxys 7, 16.

Dippel C. 1996. Investigations on the life history of Nemosoma elongatum L. (Col., Ostomidae), a bark beetle predator. J. Appl. Entomol. 120, 391–395. ( 10.1111/j.1439-0418.1996.tb01626.x) DOI

Sakamoto JM. 2007. Notes on the occurrence of Nemosoma attenuatum Van Dyke, 1915 (Coleoptera: Trogossitidae), in California with a literature review and museum survey of Nemosoma spp. Pan-Pac. Entomol. 83, 342–351. ( 10.3956/2007-19.1) DOI

Holuša J, Resnerová K, Dvořáková B, Hradecký J, Šipoš J, Fiala T. 2025. The relationship between Nemozoma elongatum (Coleoptera: Trogossitidae) and its primary bark-beetle prey-species. Ann. For. Sci. 82, 11. ( 10.1186/s13595-025-01280-z) DOI

Kolibáč J. 2008. Morphology, taxonomy and phylogeny of Phloiophilus edwardsi Stephens, 1830 (Coleoptera, Cleroidea). Entomol. Basiliensia Collect. Frey 30, 105–133.

Gimmel ML, Ferro ML. 2018. General overview of saproxylic Coleoptera. In Saproxylic insects: diversity, ecology and conservation (ed. Ulyshen MD), pp. 51–128. Cham: Springer. ( 10.1007/978-3-319-75937-1_2) DOI

Labandeira CC, Lepage BA, Johnson AH. 2001. A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? Am. J. Bot. 88, 2026–2039. ( 10.2307/3558429) PubMed DOI

Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nat. Commun. 8, 556. ( 10.1038/s41467-017-00696-0) PubMed DOI PMC

Feng Z, Wang J, Zhou WM, Wan ML, Pšenička J. 2021. Plant–insect interactions in the early Permian Wuda Tuff Flora, North China. Rev. Palaeobot. Palynol. 294, 104269. ( 10.1016/j.revpalbo.2020.104269) DOI

Mikuláš R, Milàn J, Genise JF, Bertling M, Bromley RG. 2020. An insect boring in an Early Cretaceous wood from Bornholm, Denmark. Ichnos 27, 284–289. ( 10.1080/10420940.2020.1744587) DOI

Legalov AA, Háva J. 2020. The first record of subfamily Polycaoninae (Coleoptera; Bostrichidae) from mid-Cretaceous Burmese amber. Cretac. Res. 116, 104620. ( 10.1016/j.cretres.2020.104620) DOI

Li Y-D, Philips TK, Huang D-Y, Cai C-Y. 2023. Earliest fossil record of Eucradinae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Ptinidae). Bull. Geosci. 98, 171–180. ( 10.3140/bull.geosci.1876) DOI

Li Y-D, Philips TK, Huang D-Y, Cai C-Y. 2025. Toxesbium gen. nov., the first definitive member of Ernobiinae from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptinidae). PalZ 99, 25–33. ( 10.1007/s12542-025-00715-2) DOI

Peng Y, Jiang R-x, Shi C, Song W, Long X, Engel MS, Wang S. 2022. Alitrepaninae, a new subfamily of auger beetles from mid-Cretaceous Kachin amber of northern Myanmar (Coleoptera: Bostrichidae). Cretac. Res. 137, 105244. ( 10.1016/j.cretres.2022.105244) DOI

Legalov AA, Háva J. 2022. Diversity of auger beetles (Coleoptera: Bostrichidae) in the mid-Cretaceous forests with description of seven new species. Diversity 14, 1114. ( 10.3390/d14121114) DOI

Wang H, Peng Y, Lin Q, Tao R, Zhang Z, Wang S. 2025. Two new species of the extinct subfamily Alitrepaninae (Coleoptera: Bostrichidae) from the Upper Cretaceous (Cenomanian) Kachin amber in northern Myanmar. Cretac. Res. 167, 106051. ( 10.1016/j.cretres.2024.106051) DOI

Rykken JJ, Hanson T. 1999. A guide to common bark beetles (Coleoptera: Scolytidae) endemic to the northeastern United States. Morgantown, WV: USDA, Forest Service, Forest Health Technology Enterprise Team.

Hulcr J, Atkinson TH, Cognato AI, Jordal BH, McKenna DD. 2015. Morphology, taxonomy, and phylogenetics of bark beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 41–84. London, UK: Academic Press. ( 10.1016/B978-0-12-417156-5.00002-2) DOI

Smith SM, Beaver RA, Cognato AI. 2020. A monograph of the Xyleborini (Coleoptera, Curculionidae, Scolytinae) of the Indochinese Peninsula (except Malaysia) and China. ZooKeys 983, 1–442. ( 10.3897/zookeys.983.52630) PubMed DOI PMC

Kirkendall LR, Atkinson TH. 2024. What we do and don’t know about New World pinhole borers (Coleoptera, Curculionidae, Platypodinae). Nor. J. Entomol. 25–92.

Lawrence JF. 1980. A new genus of Indo-Australian Gempylodini with notes on the constitution of the Colydiidae (Coleoptera). Aust. J. Entomol. 19, 293–310. ( 10.1111/j.1440-6055.1980.tb00989.x) DOI

Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 85–156. London: Academic Press. ( 10.1016/B978-0-12-417156-5.00003-4) DOI

Newton AF, Thayer MK, Ashe JS, Chandler DS. 2000. Staphylinidae Latreille, 1802. In American beetles vol 1: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia (eds Arnett RH Jr, Thomas MC), pp. 272–418. Boca Raton, FL: CRC Press.

Kirejtshuk AG, Kovalev AV. 2022. Monograph on the Cillaeinae (Coleoptera: Nitidulidae) from the Australian Region with comments on the taxonomy of the subfamily. Zootaxa 5103, 1–133. ( 10.11646/zootaxa.5103.1.1) PubMed DOI

Goczał J, Beutel RG, Gimmel ML, Kundrata R. 2024. When a key innovation becomes redundant: patterns, drivers and consequences of elytral reduction in Coleoptera. Syst. Entomol. 49, 193–220. ( 10.1111/syen.12617) DOI

Wheeler WM. 1927. The physiognomy of insects. Q. Rev. Biol. 2, 1–36. ( 10.1086/394264) DOI

Scheffrahn RH, Krecek J. 1999. Termites of the genus Cryptotermes banks (Isoptera: Kalotermitidae) from the West Indies. Insecta Mundi 13, 111–171.

Bishoff MJ, Peng L, Zang H-m, Morse JC. 2023. Defensive phragmosis and cathaptosis in Trichoptera larvae. Contrib. Entomol. 73, 209–218. ( 10.3897/contrib.entomol.73.e110394) DOI

Wilson EO, Hölldobler B. 1985. Caste-specific techniques of defense in the polymorphic ant Pheidole embolopyx (Hymenoptera: Formicidae). Insectes Soc. 32, 3–22. ( 10.1007/BF02233223) DOI

Six DL. 2012. Ecological and evolutionary determinants of bark beetle–fungus symbioses. Insects 3, 339–366. ( 10.3390/insects3010339) PubMed DOI PMC

Peris D, Delclòs X, Jordal B. 2021. Origin and evolution of fungus farming in wood-boring Coleoptera: a palaeontological perspective. Biol. Rev. 96, 2476–2488. ( 10.1111/brv.12763) PubMed DOI

Klepzig KD, Moser J, Lombardero F, Hofstetter R, Ayres M. 2001. Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis 30, 83–96.

Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. 2008. Bacterial protection of beetle-fungus mutualism. Science 322, 63. ( 10.1126/science.1160423) PubMed DOI PMC

Hofstetter RW, Moser JC, Blomquist SR. 2013. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi. In The ophiostomatoid fungi: expanding frontiers (eds Seifert K, de Beer Z, Wingfield M), pp. 165–176. Utrecht, The Netherlands: CBS-KNAW Biodivers. Cent.

Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD. 2015. Symbiotic associations of bark beetles. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 209–245. London, UK: Academic Press. ( 10.1016/B978-0-12-417156-5.00006-X) DOI

Wegensteiner R, Wermelinger B, Herrmann M. 2015. Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes. In Bark beetles: biology and ecology of native and invasive species (eds Vega FE, Hofstetter RW), pp. 247–304. London: Academic Press.

Hofstetter RW, Moser JC. 2014. The role of mites in insect–fungus associations. Annu. Rev. Entomol. 59, 537–557. ( 10.1146/annurev-ento-011613-162039) PubMed DOI

Li Y-D, Peris D, Yamamoto S, Hsiao Y, Newton AF, Cai C-Y. 2022. Revisiting the Raractocetus Fossils from Mesozoic and Cenozoic amber deposits (Coleoptera: Lymexylidae). Insects 13, 768. ( 10.3390/insects13090768) PubMed DOI PMC

Dunlop JA, Kontschán J, Zwanzig M. 2013. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften 100, 337–344. ( 10.1007/s00114-013-1031-8) PubMed DOI

Joharchi O, Vorontsov DD, Walter DE. 2021. Oldest determined record of a mesostigmatic mite (Acari: Mesostigmata: Sejidae) in Cretaceous Burmese amber. Acarologia 61, 641–649. ( 10.24349/goj5-BZms) DOI

Ross AJ. 2024. Complete checklist of Burmese (Myanmar) amber taxa 2023. Mesozoic 1, 21–57. ( 10.11646/mesozoic.1.1.4) DOI

Bajerlein D, Błoszyk J, Halliday B, Konwerski S. 2024. Hitchhiking through life: a review of phoresy in Uropodina mites (Parasitiformes: Mesostigmata). Eur. Zool. J. 91, 31–63. ( 10.1080/24750263.2023.2288847) DOI

Khaustov AA, Vorontsov DD, Lindquist EE. 2024. The oldest evidence of symbiosis between mites and fungi with description of a new genus and species of Trochometridiidae (Acari: Heterostigmata) from Cretaceous amber. Syst. Appl. Acarol. 29, 475–500. ( 10.11158/saa.29.4.3) DOI

Perotti MA, Young DK, Braig HR. 2016. The ghost sex-life of the paedogenetic beetle Micromalthus debilis. Sci. Rep. 6, 27364. ( 10.1038/srep27364) PubMed DOI PMC

Simpson GG. 1984. Tempo and mode in evolution. New York, NY: Columbia University Press.

Cai C, Ślipiński A, Leschen RAB, Yin Z, Zhuo D, Huang D. 2018. The first Mesozoic Jacobson’s beetle (Coleoptera: Jacobsoniidae) in Cretaceous Burmese amber and biogeographical stasis. J. Syst. Palaeontol. 16, 543–550. ( 10.1080/14772019.2017.1314388) DOI

Li Y-D, Jin Z-Y, Ślipiński A, Huang D-Y, Cai C-Y. 2024. A new species of the extant genus Bulasconotus from mid-Cretaceous Kachin amber (Coleoptera: Zopheridae: Colydiinae). Pap. Avulsos Zool. 64, e202464015. ( 10.11606/1807-0205/2024.64.015) DOI

Fu Y-Z, Li Y-D, Su Y-T, Cai C-Y, Huang D-Y. 2021. Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology 4, 266–278. ( 10.11646/palaeoentomology.4.3.14) DOI

Li Y-D, Tihelka E, Leschen RAB, Yu Y, Ślipiński A, Pang H, Huang D, Kolibáč J, Cai C. 2021. An exquisitely preserved tiny bark‐gnawing beetle (Coleoptera: Trogossitidae) from mid‐Cretaceous Burmese amber and the phylogeny of Trogossitidae. J. Zool. Syst. Evol. Res. 59, 1939–1950. ( 10.1111/jzs.12515) DOI

Li Y-D, Kolibáč J, Liu Z-H, Ślipiński A, Yamamoto S, Yu Y-L, Zhang W-T, Cai C-Y. 2024. Foveapeltis gen. nov., an unusual cleroid genus with large hypomeral cavities from mid‐Cretaceous amber (Coleoptera: Cleroidea). Ecol. Evol. 14, e11589. ( 10.1002/ece3.11589) PubMed DOI PMC

R Core Team . 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Smith MR. 2023. TreeSearch: morphological phylogenetic analysis in R. R J. 14/4, 305–315. ( 10.32614/RJ-2023-019) DOI

Goloboff PA, Torres A, Arias JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437. ( 10.1111/cla.12205) PubMed DOI

Smith MR. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol. Lett. 15, 20180632. ( 10.1098/rsbl.2018.0632) PubMed DOI PMC

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82. ( 10.1093/nar/gkae268) PubMed DOI PMC

Li YD, Leschen RAB, Kolibáč J, Engel MS, Zhang ZQ, Yu Y, Huang D, Cai C. 2025. Supplementary material from: Specialized bark-gnawing beetles reveal phragmotic defence and subcortical ecology in the Cretaceous. Figshare. ( 10.6084/m9.figshare.c.7829039) PubMed DOI PMC

Li YD, Leschen RAB, Kolibáč J, Engel MS, Zhang ZQ, Yu Y, Huang D, Cai C. 2025. Confocal and micro-CT data of Rutrizoma spp. Zenodo. ( 10.5281/zenodo.15186362) DOI

Li YD, Leschen RAB, Kolibáč J, Engel M, Zhang ZQ, Yu Yet al. 2025. Supplementary material from: Specialized bark-gnawing beetles reveal phragmotic defense and subcortical ecology in the Cretaceous. Figshare. ( 10.6084/m9.figshare.c.7829039) PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...