2´-deoxy-5,6-dihydro-5-azacytidine - a less toxic alternative of 2´-deoxy-5-azacytidine: a comparative study of hypomethylating potential

. 2011 Jun ; 6 (6) : 769-76. [epub] 20110601

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21566456

Restoration of transcriptionally silenced genes by means of methyltransferases inhibitors plays a crucial role in the current therapy of myelodysplastic syndromes and certain types of leukemias. A comparative study of hypomethylating activities of a series of 5-azacytidine nucleosides: 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC) and its α-anomer (α-DAC), 5,6-dihydro-5-azacytidine (DHAC), 2'-deoxy-5,6-dihydro-5-azacytidine (DHDAC, KP-1212) and its α-anomer (α-DHDAC), and of a 2-pyrimidone ribonucleoside (zebularine) was conducted. Methylation-specific PCR was employed to detect the efficiency of individual agents on cyclin-dependent kinase inhibitor 2B and thrombospondin-1 hypermethylated gene loci. Overall changes in DNA methylation level were quantified by direct estimation of 5-methyl-2'-deoxycytidine-5'-monophosphate by HPLC using digested genomic DNA. Flow cytometric analysis of cell cycle progression and apoptotic markers was used to determine cytotoxicity of the compounds. mRNA expression was measured using qRT-PCR. 2'-deoxy-5,6-dihydro-5-azacytidine was found to be less cytotoxic and more stable than 2'-deoxy-5-azacytidine at the doses that induce comparable DNA hypomethylation and gene reactivation. This makes it a valuable tool for epigenetic research and worth further investigations to elucidate its possible therapeutic potential.

Zobrazit více v PubMed

Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50. PubMed

Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692. PubMed PMC

Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res: Re Mutat Res. 2008;659:40–48. PubMed

Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: The time is now. Crit Rev Oncol Hematol. 2008;68:1–11. PubMed

Kristensen LS, Hansen LL. PCR-based method for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostice and response to treatment. Clin Chem. 2009;55:1471–1483. PubMed

Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol. 2002;13:1699–1716. PubMed

Mund C, Brueckner B, Lyko F. Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors. Epigenetics. 2006;1:7–13. PubMed

Šorm F, Pískala A, Cihák A, Veselý J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 1964;4:202–203. PubMed

Veselý J, Cihák A, Šorm F. Characteristics of mouse leukemic cells resistant to 5-azacytidine and 5-aza-2′-deoxycytidine. Cancer Res. 1968;28:1995–2000. PubMed

Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, et al. A comparison of azacytidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 2010;5:9001. PubMed PMC

Veselý J, Cihák A. Incorporation of a potent antileukemic agent, 5-aza-2-deoxycytidine, into DNA of cells from leukemic mice. Cancer Res. 1977;37:3684–3689. PubMed

Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103:1635–1640. PubMed

Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M, et al. Sustained exposure to the DNA demethylating agent, 2′-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence and autophagy. Biochem Pharmacol. 2011;81:364–378. PubMed

Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13. PubMed

Beisler JA, Abbasi MM, Kelley JA, Driscoll JS. Synthesis and antitumor activity of dihydro-5-azacytidine, a hydrolytically stable analogue of 5-azacytidine. J Med Chem. 1977;20:806–812. PubMed

Carr BI, Rahbar S, Doroshow JH, Blayney D, Goldberg D, Leong L, et al. Fetal hemoglobin gene activation in a phase II study of 5,6-dihydro-5-azacytidine for Bronchogenic carcinoma. Cancer Res. 1987;47:4199–4201. PubMed

Vogelzang NJ, Herndon JE, Cirrincione C, Harmon DC, Antman KH, Corson JM, et al. Dihydro-5-azacytidine in malignant mesothelioma. Cancer. 1997;79:2237–2242. PubMed

Samuels BL, Herndon JE, Harmon DC, Carey R, Aisner J, Corson JM, et al. Dihydro-5-azacytidine and cisplatin in the treatment of malignant mesothelioma. Cancer. 1998;82:1578–1584. PubMed

Pískala A, Cesnekovα B, Veselý J. Preparation and biological activity of 5,6-dihydro-5-azapyrimidine nucleosides. Nucleic Acids Res, Symposium Ser. 1987;18:57–60. PubMed

Harris KS, Brabant W, Styrchak S, Gall A, Daifuku R. KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res. 2005;67:1–9. PubMed

Murakami E, Basavapathruni A, Bradley WD, Anderson KS. Mechanism of action of a novel viral mutagenic covert nucleotide: molecular interaction with HIV-1 reverse transcriptase and host cell DNA polymerases. Antiviral Res. 2005;67:10–17. PubMed

Mullins JI, Heath L, Hughes JP, Kicha J, Styrchak S, Wong KG, et al. Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS One. 2011;6:15135. PubMed PMC

Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Jr, et al. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol. 1999;285:2021–2034. PubMed

Fojtová M, Piskala A, Votruba I, Otmar M, Bartova E, Kovarik A. Efficacy of DNA hypomethylating capacities of 5-aza-2′-deoxycytidine and its alpha anomer. Pharmacol Res. 2007;55:16–22. PubMed

Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans. 2004;32:910–912. PubMed

Champion C, Guianvarc'h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, et al. Mechanistic insights on the inhibition of C5 DNA methyltransferases by zebularine. PLoS One. 2010;5:12388. PubMed PMC

Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: A novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321:591–599. PubMed PMC

Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, et al. Preferential response of cancer cells to zebularine. Cancer cell. 2004;6:151–158. PubMed

Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003;95:399–409. PubMed

Yoo CB, Chuang JC, Byun HM, Egger G, Yang AS, Dubeau L, et al. Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumor in mice. Cancer Prev Res. 2008;1:233–240. PubMed PMC

Ben-Kasus T, Ben-Zvi Z, Marquez VE, Kelley JA, Agbaria R. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol. 2005;70:121–133. PubMed

Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004;24:1270–1278. PubMed PMC

Hájek M, Votruba I, Holý A, Krecmerová M, Tlouštíová E. Alpha anomer of 5-aza-2′-deoxycytidine downregulates hTERT mRNA expression in human leukemia HL-60 cells. Biochem Pharmacol. 2008;75:965–972. PubMed

Pískala A, Šorm F. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect Czech Chem Commun. 1964;29:2060–2076.

Holý A, Otmar M, Pískala A. method of manufacturing 1-(2-deoxy-alpha-D-erythro-pentofuranosyl)-5-azacytosine. WO 2008101448 A2 20080828.

Mertlíková-Kaiserová H, Votruba I, Matoušová M, Holý A, Hájek M. Role of caspases and CD95/Fas in the apoptotic effects of a nucleoside analog PMEG in CCRF-CEM cells. Anticancer Res. 2010;30:2791–2798. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...