Differential Regulation of Methylation-Regulating Enzymes by Senescent Stromal Cells Drives Colorectal Cancer Cell Response to DNA-Demethylating Epi-Drugs

. 2018 ; 2018 () : 6013728. [epub] 20180812

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30158986

The advanced-stage colon cancer spreads from primary tumor site to distant organs where the colon-unassociated stromal population provides a favorable niche for the growth of tumor cells. The heterocellular interactions between colon cancer cells and colon-unassociated fibroblasts at distant metastatic sites are important, yet these cell-cell interactions for therapeutic strategies for metastatic colon cancer remain underestimated. Recent studies have shown the therapeutic potential of DNA-demethylating epi-drugs 5-azacytidine (AZA) and 5-aza-2'-deoxycytidine (DAC) for the treatment of solid tumors. While the effects of these epi-drugs alone or in combination with other anticancer therapies are well described, the influence of stromal cells and their secretome on cancer cell response to these agents remain elusive. In this study, we determined the effect of normal and senescent colon-unassociated fibroblasts and their conditioned medium on colorectal cancer (CRC) cell response to AZA and DAC using a cell-based DNA demethylation reporter system. Our data show that fibroblasts accelerate cell proliferation and differentially regulate the expression of DNA methylation-regulating enzymes, enhancing DAC-induced demethylation in CRC cells. In contrast, the conditioned medium from senescent fibroblasts that upregulated NF-κB activity altered deoxycytidine kinase levels in drug-untreated CRC cells and abrogated DAC effect on degradation of DNA methyltransferase 1. Similar to 2D cultures, senescent fibroblasts increased DNA demethylation of CRC cells in coculture spheroids, in addition to increasing the stemness of CRC cells. This study presents the first evidence of the effect of normal and senescent stromal cells and their conditioned medium on DNA demethylation by DAC. The data show an increased activity of DAC in high stromal cell cocultures and suggest the potential of the tumor-stroma ratio in predicting the outcome of DNA-demethylating epigenetic cancer therapy.

Zobrazit více v PubMed

Guinney J., Dienstmann R., Wang X., et al. The consensus molecular subtypes of colorectal cancer. Nature Medicine. 2015;21(11):1350–1356. doi: 10.1038/nm.3967. PubMed DOI PMC

Linnekamp J. F., Wang X., Medema J. P., Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Research. 2015;75(2):245–249. doi: 10.1158/0008-5472.CAN-14-2240. PubMed DOI

Conti J., Thomas G. The role of tumour stroma in colorectal cancer invasion and metastasis. Cancer. 2011;3(2):2160–2168. doi: 10.3390/cancers3022160. PubMed DOI PMC

Lotti F., Jarrar A. M., Pai R. K., et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. The Journal of Experimental Medicine. 2013;210(13):2851–2872. doi: 10.1084/jem.20131195. PubMed DOI PMC

Isella C., Terrasi A., Bellomo S. E., et al. Stromal contribution to the colorectal cancer transcriptome. Nature Genetics. 2015;47(4):312–319. doi: 10.1038/ng.3224. PubMed DOI

Tsujino T., Seshimo I., Yamamoto H., et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clinical Cancer Research. 2007;13(7):2082–2090. doi: 10.1158/1078-0432.CCR-06-2191. PubMed DOI

Calon A., Lonardo E., Berenguer-Llergo A., et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genetics. 2015;47(4):320–329. doi: 10.1038/ng.3225. PubMed DOI

Vermeulen L., de Sousa E Melo F., van der Heijden M., et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology. 2010;12(5):468–476. doi: 10.1038/ncb2048. PubMed DOI

Liotta L. A., Kohn E. C. The microenvironment of the tumour-host interface. Nature. 2001;411(6835):375–379. doi: 10.1038/35077241. PubMed DOI

Tlsty T. D., Hein P. W. Know thy neighbor: stromal cells can contribute oncogenic signals. Current Opinion in Genetics & Development. 2001;11(1):54–59. doi: 10.1016/S0959-437X(00)00156-8. PubMed DOI

Ruhland M. K., Loza A. J., Capietto A.-H., et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications. 2016;7:p. 11762. doi: 10.1038/ncomms11762. PubMed DOI PMC

Schosserer M., Grillari J., Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Frontiers in Oncology. 2017;7:p. 278. doi: 10.3389/fonc.2017.00278. PubMed DOI PMC

Sabin R. J., Anderson R. M. Cellular senescence - its role in cancer and the response to ionizing radiation. Genome Integrity. 2011;2(1):p. 7. doi: 10.1186/2041-9414-2-7. PubMed DOI PMC

Demaria M., O'Leary M. N., Chang J., et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discovery. 2017;7(2):165–176. doi: 10.1158/2159-8290.CD-16-0241. PubMed DOI PMC

Liao E.-C., Hsu Y. T., Chuah Q. Y., et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death & Disease. 2014;5(5, article e1255) doi: 10.1038/cddis.2014.220. PubMed DOI PMC

McMillin D. W., Negri J. M., Mitsiades C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews Drug Discovery. 2013;12(3):217–228. doi: 10.1038/nrd3870. PubMed DOI

Brown R., Curry E., Magnani L., Wilhelm-Benartzi C. S., Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews. Cancer. 2014;14(11):747–753. doi: 10.1038/nrc3819. PubMed DOI

Cowan L. A., Talwar S., Yang A. S. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics. 2010;2(1):71–86. doi: 10.2217/epi.09.44. PubMed DOI

Li X., Mei Q., Nie J., Fu X., Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Review of Clinical Immunology. 2015;11(3):363–375. doi: 10.1586/1744666X.2015.1002397. PubMed DOI

Tsimberidou A. M., Said R., Culotta K., et al. Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy. Clinical Epigenetics. 2015;7(1):p. 29. doi: 10.1186/s13148-015-0065-5. PubMed DOI PMC

Blum W., Schwind S., Tarighat S. S., et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood. 2012;119(25):6025–6031. doi: 10.1182/blood-2012-03-413898. PubMed DOI PMC

Chiappinelli K. B., Strissel P. L., Desrichard A., et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–986. doi: 10.1016/j.cell.2015.07.011. PubMed DOI PMC

Li H., Chiappinelli K. B., Guzzetta A. A., et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–598. doi: 10.18632/oncotarget.1782. PubMed DOI PMC

Matei D., Fang F., Shen C., et al. Epigenetic Resensitization to platinum in ovarian Cancer. Cancer Research. 2012;72(9):2197–2205. doi: 10.1158/0008-5472.CAN-11-3909. PubMed DOI PMC

Wrangle J., Wang W., Koch A., et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget. 2013;4(11):2067–2079. doi: 10.18632/oncotarget.1542. PubMed DOI PMC

Gravina G. L., Festuccia C., Marampon F., et al. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Molecular Cancer. 2010;9(1):p. 305. doi: 10.1186/1476-4598-9-305. PubMed DOI PMC

Kim J.-G., Bae J.-H., Kim J.-A., Heo K., Yang K., Yi J. M. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS One. 2014;9(8, article e105405) doi: 10.1371/journal.pone.0105405. PubMed DOI PMC

Chen S.-X., Xu X.-E., Wang X.-Q., et al. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. Journal of Proteomics. 2014;110:155–171. doi: 10.1016/j.jprot.2014.07.031. PubMed DOI

Barcellos-Hoff M. H., Park C., Wright E. G. Radiation and the microenvironment - tumorigenesis and therapy. Nature Reviews Cancer. 2005;5(11):867–875. doi: 10.1038/nrc1735. PubMed DOI

Robinson J. R., Newcomb P. A., Hardikar S., Cohen S. A., Phipps A. I. Stage IV colorectal cancer primary site and patterns of distant metastasis. Cancer Epidemiology. 2017;48:92–95. doi: 10.1016/j.canep.2017.04.003. PubMed DOI PMC

Agrawal K., Das V., Otmar M., Krečmerová M., Džubák P., Hajdúch M. Cell-based DNA demethylation detection system for screening of epigenetic drugs in 2D, 3D, and xenograft models. Cytometry. Part A. 2017;91(2):133–143. doi: 10.1002/cyto.a.23004. PubMed DOI

Matoušová M., Votruba I., Otmar M., Tloušťová E., Günterová J., Mertlíková-Kaiserová H. 2′-deoxy-5,6-dihydro-5-azacytidine—a less toxic alternative of 2′-deoxy-5-azacytidine: a comparative study of hypomethylating potential. Epigenetics. 2011;6(6):769–776. doi: 10.4161/epi.6.6.16215. PubMed DOI PMC

Pascual-Vargas P., Cooper S., Sero J., Bousgouni V., Arias-Garcia M., Bakal C. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer. Scientific Data. 2017;4, article 170018 doi: 10.1038/sdata.2017.18. PubMed DOI PMC

Das V., Fürst T., Gurská S., Džubák P., Hajdúch M. Evaporation-reducing culture condition increases the reproducibility of multicellular spheroid formation in microtiter plates. Journal of Visualized Experiments. 2017;(121, article e55403) doi: 10.3791/55403. PubMed DOI PMC

Das V., Miller J. H. Non-taxoid site microtubule-stabilizing drugs work independently of tau overexpression in mouse N2a neuroblastoma cells. Brain Research. 2012;1489:121–132. doi: 10.1016/j.brainres.2012.10.022. PubMed DOI

Agrawal K. Epigenetic Study of 5-Azacytidine Nucleosides and Their Derivatives, [Ph. D. thesis] Palacký University Olomouc; 2017. DOI

Hagemann S., Heil O., Lyko F., Brueckner B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One. 2011;6(3, article e17388) doi: 10.1371/journal.pone.0017388. PubMed DOI PMC

Pauwels B., Korst A. E. C., Pattyn G. G. O., et al. The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer. 2006;6(1):p. 142. doi: 10.1186/1471-2407-6-142. PubMed DOI PMC

Grégoire V., Rosier J. F., de Bast M., et al. Role of deoxycytidine kinase (dCK) activity in gemcitabine’s radioenhancement in mice and human cell lines in vitro. Radiotherapy and Oncology. 2002;63(3):329–338. doi: 10.1016/S0167-8140(02)00106-8. PubMed DOI

Agrawal K., Das V., Vyas P., Hajdúch M. Nucleosidic DNA demethylating epigenetic drugs – a comprehensive review from discovery to clinic. Pharmacology & Therapeutics. 2018 doi: 10.1016/j.pharmthera.2018.02.006. PubMed DOI

Yang X., Lay F., Han H., Jones P. A. Targeting DNA methylation for epigenetic therapy. Trends in Pharmacological Sciences. 2010;31(11):536–546. doi: 10.1016/j.tips.2010.08.001. PubMed DOI PMC

Moran D. M., Gawlak G., Jayaprakash M. S., Mayar S., Maki C. G. Geldanamycin promotes premature mitotic entry and micronucleation in irradiated p53/p21 deficient colon carcinoma cells. Oncogene. 2008;27(42):5567–5577. doi: 10.1038/onc.2008.172. PubMed DOI PMC

Salminen A., Kauppinen A., Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP) Cellular Signalling. 2012;24(4):835–845. doi: 10.1016/j.cellsig.2011.12.006. PubMed DOI

Fabre C., Grosjean J., Tailler M., et al. A novel effect of DNA methyltransferase and histone deacetylase inhibitors : NFκB inhibition in malignant myeloblasts. Cell Cycle. 2008;7(14):2139–2145. doi: 10.4161/cc.7.14.6268. PubMed DOI

Rajabi H., Tagde A., Alam M., et al. Dna methylation by Dnmt1 and Dnmt3b methyltransferases is driven by the Muc1-C oncoprotein in human carcinoma cells. Oncogene. 2016;35(50):6439–6445. doi: 10.1038/onc.2016.180. PubMed DOI PMC

Winfield J., Esbitt A., Seutter S. F., et al. Effect of inflammatory cytokines on DNA methylation and demethylation. The FASEB Journal. 2016;30(Supplement 1):p. 1053.3.

Milanovic M., Fan D. N. Y., Belenki D., et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2017;553(7686):96–100. doi: 10.1038/nature25167. PubMed DOI

Beauséjour C. M., Krtolica A., Galimi F., et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal. 2003;22(16):4212–4222. doi: 10.1093/emboj/cdg417. PubMed DOI PMC

Bae J.-H., Kim J.-G., Heo K., Yang K., Kim T.-O., Yi J. M. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics. 2015;16(1):p. 56. doi: 10.1186/s12864-015-1229-6. PubMed DOI PMC

Antwih D. A., Gabbara K. M., Lancaster W. D., Ruden D. M., Zielske S. P. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics. 2013;8(8):839–848. doi: 10.4161/epi.25498. PubMed DOI PMC

Lee M. W., Parker W. B., Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiation Oncology. 2013;8(1):p. 223. doi: 10.1186/1748-717X-8-223. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs

. 2022 Apr 10 ; 23 (8) : . [epub] 20220410

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace