• This record comes from PubMed

Evidence for positive density-dependent emigration in butterfly metapopulations

. 2011 Nov ; 167 (3) : 657-65. [epub] 20110531

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

A positive effect of (meta)population density on emigration has been predicted by many theoretical models and confirmed empirically in various organisms. However, in butterflies, the most popular species for dispersal studies, the evidence for its existence has so far been equivocal, with negative relationships between density and emigration being reported more frequently. We analysed dispersal in sympatric metapopulations of two Maculinea butterflies, intensively surveyed with mark-release-recapture methods for 7 years. Dispersal parameters, derived using the virtual migration model, were assessed against butterfly densities, which fluctuated strongly over the study period. Emigration was positively correlated with density, and this effect was particularly strong at densities above carrying capacity, when emigration increased up to threefold in females and twofold in males compared with the normal levels. In turn, density had little impact on other dispersal parameters analysed. Our findings provide good evidence for positive density-dependence of emigration in butterflies. Emigrating at high densities is particularly beneficial for females, because it gives them a chance to lay part of their egg-load in less crowded patches, where offspring survival is higher due to lower intraspecific competition. Even though the rise in emigration becomes considerable at densities exceeding carrying capacity, i.e. relatively infrequently, it still has serious implications for many ecological phenomena, such as species range expansions, gene flow, and metapopulation persistence. Consequently, instead of treating emigration as a fixed trait, it is worth allowing for its density-dependence in applications such as population viability analyses, genetic models or metapopulation models.

See more in PubMed

Aars J, Ims RA. Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am Nat. 2000;155:252–265. doi: 10.1086/303317. PubMed DOI

Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors. Second international symposium on information theory. Budapest: Akademiai Kiado; 1973. pp. 267–281.

Arnason AN, Schwarz CJ. Using POPAN-5 to analyse banding data. Bird Study. 1999;46:157–168. doi: 10.1080/00063659909477242. DOI

Baguette M, Vansteenwegen C, Convie I, Neve G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta Oecol. 1998;19:17–24. doi: 10.1016/S1146-609X(98)80004-0. DOI

Best AS, Johst K, Münkemüller T, Travis JMJ. Which species will successfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos. 2007;116:1531–1539. doi: 10.1111/j.0030-1299.2007.16047.x. DOI

Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev. 2005;80:205–225. doi: 10.1017/S1464793104006645. PubMed DOI

Brown IL, Ehrlich PR. Population biology of the checkerspot butterfly, Euphydryas chalcedona. Structure of the Jasper Ridge colony. Oecologia. 1980;47:239–251. doi: 10.1007/BF00346827. PubMed DOI

Burnham KP, Anderson DR. Model selection and inference. Berlin: Springer; 1998.

Byers JE. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J Exp Mar Biol Ecol. 2000;248:133–150. doi: 10.1016/S0022-0981(00)00163-5. PubMed DOI

Cassel-Lundhagen A, Sjögren-Gulve P. Limited dispersal by the rare scarce heath butterfly—potential consequences for population persistence. J Ins Conserv. 2007;11:113–121. doi: 10.1007/s10841-006-9023-z. DOI

Clobert J, Ims RA, Rousset F. Causes, mechanisms and consequences of dispersal. In: Hanski I, Gaggiotti OE, editors. Ecology, genetics and evolution of metapopulation. San Diego: Elsevier; 2004. pp. 307–335.

Doak P. Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology. 2000;81:1828–1841. doi: 10.1890/0012-9658(2000)081[1828:PCORDF]2.0.CO;2. DOI

Enfjäll K, Leimar O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos. 2005;108:465–472. doi: 10.1111/j.0030-1299.2005.13261.x. DOI

Enfjäll K, Leimar O. The evolution of dispersal–the importance of information about population density and habitat characteristics. Oikos. 2009;118:291–299. doi: 10.1111/j.1600-0706.2008.16863.x. DOI

Fürst MA, Nash DR. Host ant independent oviposition in the parasitic butterfly Maculinea alcon. Biol Lett. 2010;6:174–176. doi: 10.1098/rsbl.2009.0730. PubMed DOI PMC

Gilbert LE, Singer MC. Dispersal and gene flow in a butterfly species. Am Nat. 1973;107:58–72. doi: 10.1086/282817. DOI

Gros A, Hovestadt T, Poethke HJ. Evolution of sex-biased dispersal: The role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol Model. 2008;219:226–233. doi: 10.1016/j.ecolmodel.2008.08.014. DOI

Hanski I. Metapopulation ecology. Oxford: Oxford University Press; 1999.

Hanski I, Alho J, Moilanen A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology. 2000;81:239–251. doi: 10.1890/0012-9658(2000)081[0239:ETPOSA]2.0.CO;2. DOI

Hill JK, Thomas CD, Lewis OT. Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol. 1996;65:725–735. doi: 10.2307/5671. DOI

Hochberg ME, Clarke RT, Elmes GW, Thomas JA. Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. J Anim Ecol. 1994;63:375–391. doi: 10.2307/5555. DOI

Hovestadt T, Nowicki P. Investigating movement within irregularly shaped patches: Analysis of MRR data using randomisation procedures. Isr J Ecol Evol. 2008;54:137–154. doi: 10.1560/IJEE.54.1.137. DOI

Hovestadt T, Poethke HJ. The control of emigration and its consequences for the survival of populations. Ecol Model. 2006;190:443–453. doi: 10.1016/j.ecolmodel.2005.03.023. DOI

Hovestadt T, Kubisch A, Poethke HJ. Information processing in models for density-dependent emigration: a comparison. Ecol Model. 2010;221:405–410. doi: 10.1016/j.ecolmodel.2009.11.005. DOI

Hurvich CM, Tsai C. Regression and time series model selection in small samples. Biometrika. 1989;76:297–307. doi: 10.1093/biomet/76.2.297. DOI

Kim SY, Torres R, Drummond H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology. 2009;90:230–239. doi: 10.1890/08-0133.1. PubMed DOI

Kuussaari M, Nieminen M, Hanski I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol. 1996;65:791–801. doi: 10.2307/5677. DOI

Lambin X, Aars J, Piertney SB. Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In: Clobert J, Danchin E, Dhondt AA, Nichols JD, editors. Dispersal. Oxford: Oxford University Press; 2001. pp. 110–122.

Matthysen E. Density-dependent dispersal in birds and mammals. Ecography. 2005;28:403–416. doi: 10.1111/j.0906-7590.2005.04073.x. DOI

Nachman G. Effects of demographic parameters on metapopulation size and persistence: an analytical stochastic model. Oikos. 2000;91:51–65. doi: 10.1034/j.1600-0706.2000.910105.x. DOI

Nowicki P, Richter A, Glinka U, Holzschuh A, Toelke U, Henle K, Woyciechowski M, Settele J. Less input same output—simplified approach for population size assessment in Lepidoptera. Popul Ecol. 2005;47:203–212. doi: 10.1007/s10144-005-0223-2. DOI

Nowicki P, Settele J, Thomas JA, Woyciechowski M (2005b) A review of population structure of Maculinea butterflies. In: Settele J, Kuhn E, Thomas JA (eds) Studies in the ecology and conservation of butterflies in Europe. vol 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft, Sofia–Moscow, pp 144–149

Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M. Population ecology of the endangered butterflies Maculinea teleius and M. nausithous, and its implications for conservation. Popul Ecol. 2005;47:193–202. doi: 10.1007/s10144-005-0222-3. DOI

Nowicki P, Pepkowska A, Kudlek J, Skórka P, Witek M, Settele J, Woyciechowski M. From metapopulation theory to conservation recommendations: Lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv. 2007;140:119–129. doi: 10.1016/j.biocon.2007.08.001. DOI

Nowicki P, Bonelli S, Barbero F, Balletto E. Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia. 2009;161:227–239. doi: 10.1007/s00442-009-1373-2. PubMed DOI

Odendaal FJ, Turchin P, Stermitz FR. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae) Oecologia. 1989;78:283–288. doi: 10.1007/BF00377167. PubMed DOI

Perrin N, Mazalov M. Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat. 2000;155:116–127. doi: 10.1086/303296. PubMed DOI

Petit S, Moilanen A, Hanski I, Baguette M. Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos. 2001;92:491–500. doi: 10.1034/j.1600-0706.2001.920310.x. DOI

Poethke HJ, Hovestadt T. Evolution of density- and patch-size-dependent dispersal rates. Proc R Soc Lond B. 2002;269:637–646. doi: 10.1098/rspb.2001.1936. PubMed DOI PMC

Rabasa SG, Gutierrez D, Escudero A. Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos. 2007;116:793–806. doi: 10.1111/j.0030-1299.2007.15788.x. DOI

Roland J, Keyghobadi N, Fownes S. Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology. 2000;81:1642–1653.

Schtickzelle N, Le Boulenge E, Baguette M. Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos. 2002;97:349–360. doi: 10.1034/j.1600-0706.2002.970305.x. DOI

Schtickzelle N, Mennechez G, Baguette M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology. 2006;87:1057–1065. doi: 10.1890/0012-9658(2006)87[1057:DDWHFI]2.0.CO;2. PubMed DOI

Schwarz CJ, Arnason AN. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics. 1996;52:860–873. doi: 10.2307/2533048. DOI

Schwarz CJ, Seber GAF. Estimating animal abundance: review III. Stat Sci. 1999;14:427–456. doi: 10.1214/ss/1009212521. DOI

Shapiro AM. The role of sexual behavior in density-related dispersal of pierid butterflies. Am Nat. 1970;104:367–372. doi: 10.1086/282670. DOI

StatSoft . STATISTICA (data analysis software system), version 8.0. Tulsa: StatSoft; 2008.

Stevens VM, Turlure C, Baguette M. Filling in the tapestry: a meta-analysis of dispersal in butterflies. Biol Rev. 2010;85:625–642. PubMed

Thomas JA, Elmes GW. Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc R Soc Lond B. 2001;268:471–477. doi: 10.1098/rspb.2000.1398. PubMed DOI PMC

Thomas JA, Clarke RT, Elmes GW, Hochberg ME. Population dynamics in the genus Maculinea (Lepidoptera: Lycaenidae) In: Dempster JP, McLean IFG, editors. Insect population dynamics in theory and practice. Symposia of the Royal Entomological Society 19. London: Chapman & Hall; 1998. pp. 261–290.

Travis JMJ, Mustin K, Benton TG, Dytham C. Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol. 2009;259:151–158. doi: 10.1016/j.jtbi.2009.03.008. PubMed DOI

van Dyck H, Oostermeijer JGB, Talloen W, Feenstra V, van der Hidde A, Wynhoff I. Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? Proc R Soc Lond B. 2000;267:861–866. doi: 10.1098/rspb.2000.1082. PubMed DOI PMC

van Langevelde F, Wynhoff I. What limits the spread of two congeneric butterfly species after their reintroduction: quality or spatial arrangement of habitat? Anim Conserv. 2009;12:540–548. doi: 10.1111/j.1469-1795.2009.00281.x. DOI

Wahlberg N, Klemetti T, Selonen V, Hanski I. Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia. 2002;130:33–43. PubMed

Wang R, Wang Y, Chen J, Lei GC, Rumei X. Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol Entomol. 2004;29:367–374. doi: 10.1111/j.0307-6946.2004.00610.x. DOI

White GC, Burnham KP. Program MARK: survival estimation from populations of marked animals. Bird Study. 1999;46:120–138. doi: 10.1080/00063659909477239. DOI

Witek M, Sliwinska E, Skórka P, Nowicki P, Wantuch M, Vrabec V, Settele J, Woyciechowski M. Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in East-central Europe. Eur J Entomol. 2008;105:871–877.

Witek M, Nowicki P, Sliwinska E, Skórka P, Settele J, Schönrogge K, Woyciechowski M. Local host ant specificity of Phengaris (Maculinea) teleius butterfly, an obligatory social parasite of Myrmica ants. Ecol Entomol. 2010;35:557–564. doi: 10.1111/j.1365-2311.2010.01213.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...