Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
21953978
DOI
10.1002/jbm.a.33221
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčná adheze MeSH
- cholesterol chemie MeSH
- experimentální implantáty MeSH
- hydrogely chemie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- mechanický stres MeSH
- methakryláty chemie MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- molekulární struktura MeSH
- polyhydroxyethylmethakrylát chemie MeSH
- poranění míchy patologie MeSH
- poréznost MeSH
- potkani Wistar MeSH
- proliferace buněk MeSH
- regenerace míchy * MeSH
- regenerace nervu * MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- cholesterol MeSH
- ethylene dimethacrylate MeSH Prohlížeč
- hydrogely MeSH
- hydroxyethyl methacrylate MeSH Prohlížeč
- methakryláty MeSH
- polyhydroxyethylmethakrylát MeSH
Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with cholesterol and the introduction of large pores have been developed to create highly superporous hydrogels that promote cell-surface interactions and that can serve as a permissive scaffold for spinal cord injury (SCI) treatment. Highly superporous cholesterol-modified PHEMA scaffolds have been prepared by the bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), cholesterol methacrylate (CHLMA), and ethylene dimethacrylate (EDMA) cross-linking agent in the presence of ammonium oxalate crystals to establish interconnected pores in the scaffold. Moreover, 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) was incorporated in the polymerization recipe and hydrolyzed, thus introducing carboxyl groups in the hydrogel to control its swelling and softness. The hydrogels supported the in vitro adhesion and proliferation of rat mesenchymal stem cells. In an in vivo study of acute rat SCI, hydrogels were implanted to bridge a hemisection cavity. Histological evaluation was done 4 weeks after implantation and revealed the good incorporation of the implanted hydrogels into the surrounding tissue, the progressive infiltration of connective tissue and the ingrowth of neurofilaments, Schwann cells, and blood vessels into the hydrogel pores. The results show that highly superporous cholesterol-modified PHEMA hydrogels have bioadhesive properties and are able to bridge a spinal cord lesion.
Citace poskytuje Crossref.org
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury
Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury
Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair