The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22194951
PubMed Central
PMC3237564
DOI
10.1371/journal.pone.0028925
PII: PONE-D-11-14531
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- chování zvířat * MeSH
- chronická nemoc MeSH
- dopamin metabolismus MeSH
- kočky MeSH
- kontrola chování * MeSH
- mozek parazitologie patologie MeSH
- myši MeSH
- orgánová specificita MeSH
- počet buněk MeSH
- tělesná hmotnost fyziologie MeSH
- Toxoplasma cytologie fyziologie MeSH
- toxoplazmóza parazitologie patologie MeSH
- tropismus fyziologie MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dopamin MeSH
BACKGROUND: The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. METHODOLOGY/PRINCIPAL FINDINGS: The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. CONCLUSION/SIGNIFICANCE: The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism.
Zobrazit více v PubMed
Hutchison WM, Work K. Toxoplasma – a versatile parasite. New Sci. 1969;29:464–466.
Webster JP. Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect. 2001;3:1037–1045. PubMed
Webster JP. The effect of Toxoplasma gondii on animal behavior: Playing cat and mouse. Schizophr Bull. 2007;33:752–756. PubMed PMC
Flegr J. Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol (Praha) 2010;57:81–7. PubMed
Vyas A, Sapolsky R. Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain? Folia Parasitol (Praha) 2010;57:88–94. PubMed
Berdoy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci. 2000;267:1591–1594. PubMed PMC
Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A. 2007;104:6442–6447. PubMed PMC
Lamberton PHL, Donnelly CA, Webster JP. Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology. 2008;135:1143–50. PubMed
Kannan G, Moldovan K, Xiao JC, Yolken RH, Jones-Brando L, et al. Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol (Praha) 2010;57:151–155. PubMed
Hermes G, Ajioka JW, Kelly KA, Mui E, Roberts F, et al. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation. 2008;5:48. PubMed PMC
Horacek J, Flegr J, Tintera J, Verebova K, Spaniel F, et al. Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: Voxel-based-morphometry (VBM) study. World J Biol Psychiatry. 2011 doi: 10.3109/15622975.2011.573809. PubMed DOI
Skallová A, Novotná M, Kolbeková P, Gašová Z, Veselý V, et al. Decreased level of novelty seeking in blood donors infected with Toxoplasma. Neuro Endocrinol Lett. 2005;26:480–486. PubMed
Webster JP, McConkey GA. Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. Folia Parasitol (Praha) 2010;57:95–104. PubMed
Stibbs HH. Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol. 1985;79:153–157. PubMed
Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One. 2009;4:e4801. PubMed PMC
Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, et al. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE. 2011;6(9):e23866. doi: 10.1371/journal.pone.0023866. PubMed DOI PMC
Hutchison WM, Aitken PP, Wells BWP. Chronic Toxoplasma infections and familiarity novelty discrimination in the mouse. Ann Trop Med Parasitol. 1980;74:145–150. PubMed
Webster JP. The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology. 1994;109:583–589. PubMed
Hrdá S, Votýpka J, Kodym P, Flegr J. Transient nature of Toxoplasma gondii-induced behavioral changes in mice. J Parasitol. 2000;86:657–663. PubMed
Skallová A, Kodym P, Frynta D, Flegr J. The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology. 2006;133:525–535. PubMed
Gulinello M, Acquarone M, Kim JH, Spray DC, Barbosa HS, et al. Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology. Microbes Infect. 2010;12:528–537. PubMed PMC
Hay J, Hutchison WM, Aitken PP, Graham DI. The effect of congenital and adult-aquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann Trop Med Parasitol. 1983;77:483–495. PubMed
Berdoy M, Webster JP, Macdonald DW. Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology. 1995;111:403–409. PubMed
Flegr J, Preiss M, Klose J, Havlíček J, Vitáková M, et al. Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii. Dopamine, a missing link between schizophrenia and toxoplasmosis. Biol Psychol. 2003;63:253–268. PubMed
Webster JP, Lamberton PH, Donnelly CA, Torrey EF. Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii's ability to alter host behaviour. Proc Biol Sci. 2006;273:1023–30. PubMed PMC
Torrey EF, Yolken RH. Could schizophrenia be a viral zoonosis transmitted from house cats? Schizophr Bull. 1995;21:167–171. PubMed
Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull. 2007;33:729–736. PubMed PMC
Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, et al. Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect Immun. 2008;76:3491–3501. PubMed PMC
Ferguson DJ, Graham DI, Hutchison WM. Pathological changes in the brains of mice infected with Toxoplasma gondii: a histological, immunocytochemical and ultrastructural study. Int J Exp Pathol. 1991;72:463–474. PubMed PMC
Kittas S, Kittas C, Paizi-Biza P, Henry L. A histological and immunohistochemical study of the changes induced in brains of white mice by infection with Toxoplasma gondii. Br J Exp Pathol. 1984;65:67–74. PubMed PMC
Dellacasa-Lindberg I, Hitziger N, Barragan A. Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect. 2007;9:1291–1298. PubMed
Gonzalez LE, Rojnik B, Urrea F, Urdaneta H, Petrosino P, et al. Toxoplasma gondii infection lower anxiety as measured in the plus-maze and social interaction tests in rats A behavioral analysis. Behav Brain Res. 2007;177:70–79. PubMed
Post MJ, Chan JC, Hensley GT, Hoffman TA, Moskowitz LB, et al. Toxoplasma encephalitis in Haitian adults with acquired immunodeficiency syndrome: a clinical-pathologic-CT correlation. AJR Am J Roentgenol. 1983;140:861–868. PubMed
Porter SB, Sande MA. Toxoplasmosis of the central nervous system in the acquired immunodeficiency syndrome. N Engl J Med. 1992;327:1643–1648. PubMed
Arendt G, von Giesen HJ, Hefter H, Neuen-Jacob E, Roick H, et al. Long-term course and outcome in AIDS patients with cerebral toxoplasmosis. Acta Neurol Scand. 1999;100:178–184. PubMed
Reiter-Owona I, Seitz H, Gross U, Sahm M, Rockstroh JK, et al. Is stage conversion the initiating event for reactivation of Toxoplasma gondii in brain tissue of AIDS patients? J Parasitol. 2000;86:531–536. PubMed
Canteras NS. The medial hypothalamic defensive system: Hodological organization and functional implications. Pharmacol Biochem Behav. 2002;71:481–491. PubMed
Canteras NS, Chiavegatto S, Ribeiro do Valle LE, Swanson LW. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull. 1997;44:297–305. PubMed
Dielenberg RA, McGregor IS. Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev. 2001;25:597–609. PubMed
Comoli E, Ribeiro-Barbosa ER, Canteras NS. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res. 2003;138:17–28. PubMed
McGregor IS, Hargreaves GA, Apfelbach R, Hunt GE. Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J Neurosci. 2004;24:4134–4144. PubMed PMC
Beijamini V, Guimarães FS. c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res. 2006;170:52–61. PubMed
Staples LG, McGregor IS, Apfelbach R, Hunt GE. Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats. Neuroscience. 2008;151:937–947. PubMed
Darcy F, Santoro F. Kierszenbaum F, editor. Toxoplasmosis. Parasitic infections and the immune system. 1994. pp. 163–201. Academic Press Inc., San Diego, Calif.
Kodym P, Blažek K, Malý M, Hrdá Š. Pathogenesis of experimental toxoplasmosis in mice with strains differing in virulence. Acta Parasitol. 2002;47:239–248.
Denkers EY, Gazzelini RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev. 1998;11:569–588. PubMed PMC
Lee YH, Channon JY, Matsuura T, Schwartzman JD, Shin DW, et al. Functional and quantitative analysis of splenic T cell immune responses following oral Toxoplasma gondii infection in mice. Exp Parasitol. 1999;91:212–221. PubMed
Vyas A, Kim SK, Sapolsky RM. The effects of Toxoplasma infection on rodent behavior are dependent on dose of the stimulus. Neuroscience. 2007;148:342–348. PubMed PMC
Witting PA. Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Z Parasitenkd. 1979;61:29–51. PubMed
Hodková H, Kodym P, Flegr J. Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology. 2007;134:1329–1337. PubMed
Hay J, Aitken PP, Hair DM, Hutchison WM, Graham DI. The effect of congenital Toxoplasma infection on mouse activity and relative preference for exposed areas over a series of trials. Ann Trop Med Parasitol. 1984;78:611–618. PubMed
Hay J, Aitken PP, Arnott MA. The influence of congenital Toxoplasma infection on the spontaneous running activity of mice. Z Parasitenkd. 1985;71:459–462. PubMed
Araujo FG, Williams DM, Grumet FC, Remington JS. Strain-dependent differences in murine susceptibility to Toxoplasma. Infect Immun. 1976;13:1528–1530. PubMed PMC
Johnson AM. Strain-dependent, route of challenge-dependent, murine susceptibility to toxoplasmosis. Z Parasitenkd. 1984;70:303–309. PubMed
Herculano-Houzel S, Mota B, Lent R. Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A. 2006;103:12138–43. PubMed PMC
Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–541. PubMed
Fagard R, Van Tan H, Creuzet C, Pelloux H. Differential development of Toxoplasma gondii in neural cells. Parasitol Today. 1999;15:504–507. PubMed
Supiot F, Guillaume MP, Hermanus N, Telerman-Toppet N, Karmali R. Toxoplasma encefalitis in a HIV patient: unusual involvement of the corpus callosum. Clin Neurol Neurosurg. 1997;99:287–290. PubMed
Unno A, Suzuki K, Xuan X, Nishikawa Y, Kitoh K, et al. Dissemination of extracellular and intracellular Toxoplasma gondii tachyzoites in the blood flow. Parasitol Int. 57:515–518. PubMed
Lambert H, Dellacasa-Lindberg I, Barragan A. Migratory responses of leukocytes infected with Toxoplasma gondii. Microbes Infect. 2011;13:96–102. PubMed
Conley FK, Jenkins KA. Immunohistological study of the anatomic relationship of Toxoplasma antigens to the inflammatory response in the brains of mice chronically infected with Toxoplasma gondii. Infect Immun. 1981;31:1184–1192. PubMed PMC
Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25:621–625. PubMed
Hevner RF, Liu S, Wong-Riley MT. A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience. 1995;65:313–342. PubMed
Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature. 2007;450:53–508. PubMed
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184. PubMed
Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931. PubMed
De Olmos JS, Beltramino CA, Alheid G. Paxinos G, editor. Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchiotectonical, and chemoarchitectonical survey. The rat nervous system. 2004. pp. 509–603. Elsevier Academic Press, San Diego.
Li CI, Maglinao TL, Takahashi LK. Medial amygdala modulation of predator odor-induced unconditioned fear in the rat. Behav Neurosci. 2004;118:324–332. PubMed
Petrovich GD, Canteras NS, Swanson LW. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev. 2001;38:247–289. PubMed
Witter MP, Amaral DG. Paxinos G, editor. Hippocampal formation. The rat nervous system. 2004. pp. 635–704. Elsevier Academic Press, San Diego.
van Strien NM, Cappaert NL, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10:272–282. PubMed
Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, et al. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A. 2002;99:10825–10830. PubMed PMC
McHugh SB, Deacon RM, Rawlins JN, Bannerman DM. Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci. 2004;118:63–78. PubMed
Trivedi MA, Coover GD. Lesions of the ventral hippocampus, but not the dorsal hippocampus, impair conditioned fear expression and inhibitory avoidance on the elevated T-maze. Neurobiol Learn Mem. 2004;81:172–184. PubMed
Pentkowski NS, Blanchard DC, Lever C, Litvin Y, Blanchard RJ. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur J Neurosci. 2006;23:2185–2196. PubMed
Carlezon WA, Jr, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology. 2009;56:122–132. PubMed PMC
Schwienbacher I, Fendt M, Richardson R, Schnitzler HU. Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Res. 2009;1027:87–93. PubMed
Liu ZH, Shin R, Ikemoto S. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology. 2008;33:3010–3020. PubMed PMC
Groenewegen HJ, Witter MP. Paxinos G, editor. Thalamus. The rat nervous system. 2004. pp. 407–453. Elsevier Academic Press, San Diego.
Hutchison WM, Aitken PP, Wells BWP. Chronic Toxoplasma infections and motor performance in the mouse. Ann Trop Med Parasitol. 1980;74:507–510. PubMed
Havlíček J, Gašová ZG, Smith AP, Zvára K, Flegr J. Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology. 2001;122:515–520. PubMed
Yereli K, Balcioğlu IC, Ozbilgin A. Is Toxoplasma gondii a potential risk for traffic accidents in Turkey? Forensic Sci Int. 2006;163:34–37. PubMed
Flegr J, Klose J, Novotná M, Berenreitterová M, Havlíček J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect Dis. 2009;9:72. PubMed PMC
Hutchison WM, Bradley M, Cheyne WM, Wells BWP, Hay J. Behavioural abnormalities in Toxoplasma-infected mice. Ann Trop Med Parasitol. 1980;74:337–345. PubMed
Takeda H, Tsuji M, Matsumiya T. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol. 1998;350:21–29. PubMed
O'Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford: Claredon; 1978.
Best PJ, White AM, Minai A. Spatial progressing in the brain: the activity of hippocampal place cells. Annu Rev Neurosci. 2001;24:459–486. PubMed
Moser EI, Kropff E, Moser MB. Place cells, grid cells, ant the brain's spatial representation system. Annu Rev Neurosci. 2008;31:69–89. PubMed
Eichenbaum H. A cortical–hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1:41–50. PubMed
Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279–306. PubMed
Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron. 2000;27:623–633. PubMed
Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus. Neuron. 2003;40:1227–1239. PubMed
Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science. 2005;309:619–623. PubMed
Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–1264. PubMed
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–806. PubMed
Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758–762. PubMed
Taube JS. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci. 2007;30:181–207. PubMed
Piekarski G, Zippelius HM, Witting PA. Auswirkungen einer latenten Toxoplasma-Infektion auf das Lernvermogen von weissen Laboratoriumsratten and mausen. Z Parasitenkd. 1978;57:1–15. PubMed
Tohyama M, Takatsuji K. Atlas of neuroactive substances and their receptors in the rat. 1998. 337 Oxford University Press. Oxford.
Zástěra M, Pokorný J, Jíra J, Valkoun A. Amendment to standard laboratory methods for diagnosing of toxoplasmosis. Acta Hyg Epid Microb. 1987;3:3–14.
Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 2001. 264