A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22281390
DOI
10.1016/j.imlet.2012.01.001
PII: S0165-2478(12)00003-X
Knihovny.cz E-resources
- MeSH
- Enzyme Activation MeSH
- Lymphocyte Activation MeSH
- Leukocyte Common Antigens metabolism MeSH
- Cell Membrane metabolism MeSH
- CD4-Positive T-Lymphocytes immunology MeSH
- Centrifugation, Density Gradient MeSH
- Detergents pharmacology MeSH
- Membrane Microdomains metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Signal Transduction * MeSH
- Protein Transport MeSH
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck) immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Leukocyte Common Antigens MeSH
- Detergents MeSH
- PTPRC protein, human MeSH Browser
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck) MeSH
Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.
References provided by Crossref.org
Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement