Electrochemically pretreated carbon microfiber electrodes as sensitive HPLC-EC detectors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22654586
PubMed Central
PMC3361223
DOI
10.1100/2012/295802
Knihovny.cz E-zdroje
- MeSH
- elektrochemie metody MeSH
- elektrody * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The paper focuses on the analysis and detection of electroactive compounds using high-performance liquid chromatography (HPLC) combined with electrochemical detection (EC). The fabrication and utilization of electrochemically treated carbon fiber microelectrodes (CFMs) as highly sensitive amperometric detectors in HPLC are described. The applied pretreatment procedure is beneficial for analytical characteristics of the sensor as demonstrated by analysis of the model set of phenolic acids. The combination of CFM with separation power of HPLC technique allows for improved detection limits due to unique electrochemical properties of carbon fibers. The CFM proved to be a promising tool for amperometric detection in liquid chromatography.
Zobrazit více v PubMed
Szumski M, Buszewski B. State of the art in miniaturized separation techniques. Critical Reviews in Analytical Chemistry. 2002;32(1):1–46.
Tao D, Zhang L, Shan Y, Liang Z, Zhang Y. Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research. Analytical and Bioanalytical Chemistry. 2011;399(1):229–241. PubMed
Donker MG, Reinhoud NJ, van Valkenburg CFM. Attomole detection limits in micro HPLC-ECD. Monitoring Molecules in Neuroscience. 2001:13–14.
Cheng FC, Kuo JS. High-performance liquid chromatographic analysis with electrochemical detection of biogenic amines using microbore columns. Journal of Chromatography B. 1995;665(1):1–13. PubMed
Huffman ML, Venton BJ. Carbon-fiber microelectrodes for in vivo applications. Analyst. 2009;134(1):18–24. PubMed PMC
Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature. 1992;358(6388):676–678. PubMed
Guzmán A, Agüí L, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Carbon fiber cylindrical microelectrode-based detector for the determination of antithyroid drugs. Talanta. 2002;56(3):577–584. PubMed
Hu IF, Kuwana T. Trace analysis of dansyl amino-acids using Hplc with a carbon fiber-based electrochemical detector. Abstracts of Papers of the American Chemical Society, vol. 196, pp. 184, 1988.
Sagar KA, Kelly MT, Smyth MR. Analysis of terbutaline in human plasma by high-performance liquid chromatography with electrochemical detection using a micro-electrochemical flow cell. Journal of Chromatography. 1992;577(1):109–116. PubMed
White JG, Soli AL, Jorgenson JW. Rapid scan microvoltammetric detection for liquid chromatography. Journal of Liquid Chromatography. 1993;16(7):1489–1496.
Hua C, Lee HK, Hsieh AK. Determination of epinine in human urine by high-performance liquid-chromatography coupled with electrochemical detection using carbon-fiber microelectrodes. Electroanalysis. 1994;6:1147–1149.
Marazuela M, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Microcylinder polymer modified electrodes as amperometric detectors for liquid chromatographic analysis of Catecholamines. Electroanalysis. 1999;11(18):1333–1339.
Sagar KA, Smyth MR. Simultaneous determination of levodopa, carbidopa and their metabolites in human plasma and urine samples using LC-EC. Journal of Pharmaceutical and Biomedical Analysis. 2000;22(3):613–624. PubMed
Barek J, Teraso A, Mejstrik V, Moreira JC, Zima J. HPLC-RP separation with electrochemical detection of daminozide and 1,1-dimethylhydrazine. Chemia Analityczna. 2003;48(3):483–493.
Guzmán A, Agüí L, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Flow injection and HPLC determination of furosemide using pulsed amperometric detection at microelectrodes. Journal of Pharmaceutical and Biomedical Analysis. 2003;33(5):923–933. PubMed
Agrafiotou P, Sotiropoulos S, Pappa-Louisi A. Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. Journal of Separation Science. 2009;32(7):949–954. PubMed
Buffle J, Tercier-Waeber ML. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. TrAC—Trends in Analytical Chemistry. 2005;24(3):172–191.
Kepley LJ, Bard AJ. Ellipsometric, electrochemical, and elemental characterization of the surface phase produced on glassy carbon electrodes by electrochemical activation. Analytical Chemistry. 1988;60(14):1459–1467.
Proctor A, Sherwood PMA. X-ray photoelectron spectroscopic studies of carbon fibre surfaces-II. The effect of electrochemical treatment. Carbon. 1983;21(1):53–59.
Ray K, McCreery RL. Spatially resolved raman spectroscopy of carbon electrode surfaces: observations of structural and chemical heterogeneity. Analytical Chemistry. 1997;69(22):4680–4687.
Roberts JG, Moody BP, McCarty GS, Sombers LA. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir. 2010;26(11):9116–9122. PubMed
Kovach PM, Deakin MR, Wightman RM. Electrochemistry at partially blocked carbon-fiber microcylinder electrodes. Journal of Physical Chemistry. 1986;90(19):4612–4617.
Jirovský D, Horákova D, Kotouček M, Valentova K, Ulrichová J. Analysis of phenolic acids in plant materials using HPLC with amperometric detection at a platinum tubular electrode. Journal of Separation Science. 2003;26(8):739–742.
Jirovský D, Kosina P, Myslínová M, Stýskala J, Ulrichová J, Šimánek V. HPLC analysis of rosmarinic acid in feed enriched with aerial parts of Prunella vulgaris and its metabolites in pig plasma using dual-channel coulometric detection. Journal of Agricultural and Food Chemistry. 2007;55(19):7631–7637. PubMed
Jandera P, Škeříková V, Řehová L, et al. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. Journal of Separation Science. 2005;28(9-10):1005–1022. PubMed
Pontié M, Bedioui F, Devynck J. New composite modified carbon microfibers for sensitive and selective determination of physiologically relevant concentrations of nitric oxide in solution. Electroanalysis. 1999;11(12):845–850.
Allen BW, Coury LA, Piantadosi CA. Electrochemical detection of physiological nitric oxide: materials and methods. Methods in Enzymology. 2002;359:125–134. PubMed
Trevin S, Bedioui F, Devynck J. Electrochemical and spectrophotometric study of the behavior of electropolymerized nickel porphyrin films in the determination of nitric oxide in solution. Talanta. 1996;43(3):303–311. PubMed
Lantoine F, Trévin S, Bedioui F, Devynck J. Selective and sensitive electrochemical measurement of nitric oxide in aqueous solution: discussion and new results. Journal of Electroanalytical Chemistry. 1995;392(1-2):85–89.
Gonon FG, Fombarlet CM, Buda MJ, Pujol JF. Electrochemical treatment of pyrolytic carbon fiber electrodes. Analytical Chemistry. 1981;53(9):1386–1389.
Kamau GN. Electrochemical and electron spectroscopic studies of highly polished glassy carbon electrodes. Analytical Chemistry. 1985;57(2):545–551. PubMed
Feng JX, Brazell M, Renner K, Kasser R, Adams RN. Electrochemical pretreatment of carbon fibers for in vivo electrochemistry: effects on sensitivity and response time. Analytical Chemistry. 1987;59(14):1863–1867. PubMed
Hrbáč J, Gregor Č, Machová M, et al. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. Bioelectrochemistry. 2007;71(1):46–53. PubMed