Electrochemical HPLC Determination of Piperazine Antihistamine Drugs Employing a Spark-Generated Nickel Oxide Nanoparticle-Modified Carbon Fiber Microelectrode
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38313503
PubMed Central
PMC10831984
DOI
10.1021/acsomega.3c09474
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, we demonstrate a sensitive high-performance liquid chromatography (HPLC) method for the determination of piperazine antihistamine drugs employing innovative electrochemical detection based on a spark-generated nickel oxide nanoparticle-modified carbon fiber microelectrode built into a miniaturized electrochemical detector. The direct carbon fiber-to-nickel plate electrode spark discharge, carried at 0.8 kV DC, with the nickel electrode connected to the negative pole of the high-voltage power supply, provides extremely fast (1 s) in situ tailoring of the carbon fiber microelectrode surface by nickel oxide nanoparticles. It has been found that nickel oxide nanoparticles exhibit an electrocatalytic effect toward the piperazine moiety electrooxidation process, as confirmed by voltammetric experiments, revealing the shift in the peak potential from 1.25 to 1.09 V versus Ag/AgCl. Cetirizine, cyclizine, chlorcyclizine, flunarizine, meclizine, and buclizine were selected as sample piperazine antihistamine drugs, while diclofenac served as an internal standard. The isocratic reversed-phase separation of the above set was achieved within 15 min using an ARION-CN 3 μm column with a binary mobile phase consisting of 50 mM phosphate buffer (pH 3) and methanol (45/55, v/v). The limits of detection (LOD) were within the range of 3.8-120 nM (for cyclizine and buclizine) at E = +1500 mV (vs Ag/AgCl), while the response was linear within the concentration range measured up to 5 μmol L-1. The method was successfully applied to the determination of piperazine antihistamine drugs in spiked plasma samples.
Zobrazit více v PubMed
Estelle F.; Simons R. Advances in H1-Antihistamines. N. Engl. J. Med. 2004, 351 (21), 2203–2217. 10.1056/NEJMra033121. PubMed DOI
Hoyte F. C. L.; Katial R. K. Antihistamine Therapy in Allergic Rhinitis. Immunol. Allergy Clin. North Am. 2011, 31 (3), 509–543. 10.1016/j.iac.2011.05.003. PubMed DOI
Mahdy A. M.; Webster N. R. Histamine and antihistamines. Anaesth. Intensive Care Med. 2017, 18 (4), 210–215. 10.1016/j.mpaic.2017.01.007. DOI
Raikar P.; Gurupadayya B.; Koganti V. S. Recent Advances in Chiral Separation of Antihistamine Drugs: Analytical and Bioanalytical Methods. Curr. Drug Delivery 2018, 15 (10), 1393–1410. 10.2174/1567201815666180830100015. PubMed DOI
Cui Y.; Su A.; Feng J.; et al. Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine. Spectrochim. Acta, Part A 2022, 264, 12029310.1016/j.saa.2021.120293. PubMed DOI
Khorshed A. A.; Khairy M.; Elsafty S. A.; et al. Disposable screen-printed electrodes modified with uniform iron oxide nanocubes for the simple electrochemical determination of meclizine, an antihistamine drug. Anal. Methods 2019, 11, 282–287. 10.1039/C8AY02405G. DOI
Enna S. J.; Bylund D. B.. xPharm: The Comprehensive Pharmacology Reference; Elsevier, 2008.
Jensen B. P.; Vella-Brincat J. W.; Begg E. J. Quantification of cyclizine and norcyclizine in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Chromatogr. B 2011, 879 (9–10), 605–609. 10.1016/j.jchromb.2011.01.021. PubMed DOI
Bhadoriya A.; Shah P. A.; Shrivastav P. S.; et al. A high-throughput LC-MS/MS method for determination of flunarizine in human plasma: Pharmacokinetic study with different doses. Biomed. Chromatogr. 2019, 33 (9), e458210.1002/bmc.4582. PubMed DOI
Hsieh Y. H.; Lee M. Y.; Wu C. C. An electrooxidative technique to fast fabricate copper phosphate electrodes capable of integrating high performance liquid chromatography for the label-free detection of fish freshness. Food Chem. 2018, 269, 16–23. 10.1016/j.foodchem.2018.06.125. PubMed DOI
Khorshed A. A.; Khairy M.; Banks C. E. Voltammetric determination of meclizine antihistamine drug utilizing graphite screen-printed electrodes in physiological medium. J. Electroanal. Chem. 2018, 824, 39–44. 10.1016/j.jelechem.2018.07.029. DOI
Teive H. A. G.; Troiano A.; Germiniani F.; Werneck L. C. Flunarizine and cinnarizine-induced parkinsonism: a historical and clinical analysis. Parkinsonism Relat. Disord. 2004, 10 (4), 243–245. 10.1016/j.parkreldis.2003.12.004. PubMed DOI
Shamshad H.; Mirza A. Z. Application of RP-HPLC method for the simultaneous determination of cetirizine in the presence of quinolones. Future J. Pharm. Sci. 2021, 7 (1), 11710.1186/s43094-021-00270-y. DOI
Karakuş S.; Kucukguzel I.; Kucukguzel S. G. Development and validation of a rapid RP-HPLC method for the determination of cetirizine or fexofenadine with pseudoephedrine in binary pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2008, 46 (2), 295–302. 10.1016/j.jpba.2007.10.018. PubMed DOI
O’Connor N.; Geary M.; Wharton M.; Sweetman P. Development and validation of a rapid chromatographic method for the analysis of flunarizine and its main production impurities. J. Pharm. Anal. 2013, 3 (3), 211–214. 10.1016/j.jpha.2012.12.005. PubMed DOI PMC
Sher N.; Siddiqui F. A.; Hasan N.; et al. Simultaneous determination of antihistamine anti-allergic drugs, cetirizine, domperidone, chlorphenamine maleate, loratadine, meclizine and buclizine in pharmaceutical formulations, human serum and pharmacokinetics application. Anal. Methods 2014, 6 (8), 2704–2714. 10.1039/c3ay41698d. DOI
Schlatt L.; Costa A. C. C.; Barz V.; et al. Fast simultaneous quantification of gabapentin and cetirizine in cell lysates by means of HPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 184, 11317210.1016/j.jpba.2020.113172. PubMed DOI
Wang Z.; Qian S.; Zhang Q.; Chow M. S. S. Quantification of meclizine in human plasma by high performance liquid chromatography-mass spectrometry. J. Chromatogr. B 2011, 879 (1), 95–99. 10.1016/j.jchromb.2010.11.022. PubMed DOI
Bartosova Z.; Riman D.; Halouzka V.; Vostalova J.; Simanek V.; Hrbac J.; Jirovsky D. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosinein human urine and plasma. Anal. Chim. Acta 2016, 935, 82–89. 10.1016/j.aca.2016.06.044. PubMed DOI
Kumar A. M.; Fernandez B.; Antoni M. H.; Eisdorfer S.; Kumar M. Catecholamine quantification in body fluids using isocratic, reverse phase HPLC-CoulArray multi-electrode chemical detector system: Investigation of sensitivity, stability, and reproducibility. J. Liq. Chromatogr. Relat. Technol. 2003, 26 (20), 3433–3451. 10.1081/JLC-120025600. DOI
Waś J.; Niedolistek M.; Wróbel A.; Malina S.; Prejbisz A.; Januszewicz A.; Rabczenko D.; Lutynska A. Comparison of mass spectrometry coupled to liquid chromatography (LC-MS/MS) & high performance liquid chromatography with coulometric detection (HPLC-CD) for determination of catecholamine - producing tumors. Clin. Chim. Acta 2019, 493, S67.10.1016/j.cca.2019.03.149. DOI
Mohanraj J.; Durgalakshmi D.; Rakkesh R. A.; Balakumar S.; Rajendran S.; Karimi-Maleh H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 2020, 566, 463–472. 10.1016/j.jcis.2020.01.089. PubMed DOI
Wu F. H.; Xu F. R.; Liu W.; Chen S. A.; Luo H. J.; Cheng N.; Zhao H. A.; Cao W. A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods. Foods 2023, 12 (16), 310010.3390/foods12163100. PubMed DOI PMC
de Souza J. C.; da Silva J. L.; Fabrao R. M.; Stradiotto N. R.; Zanoni M. V. B. Electroactive sugars, organic acids and sugar alcohol analysis in wine using anion-exchange chromatography with electrochemical detection. Microchem. J. 2019, 147, 972–978. 10.1016/j.microc.2019.04.010. DOI
Eagambaram M.; Kumar K. Design of an Efficient Tin Selenide-Based Ternary Nanocomposite Electrode for Simultaneous Determination of Paracetamol, Tryptophan, and Caffeine. ACS Omega 2022, 7 (40), 35486–35495. 10.1021/acsomega.1c07306. PubMed DOI PMC
Němcová L.; Zima J.; Barek J.; et al. Determination of resveratrol in grains, hulls and leaves of common and tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode. Food Chem. 2011, 126 (1), 374–378. 10.1016/j.foodchem.2010.10.108. DOI
Mahé E.; Devilliers D.; Dardoize F. Boron doped diamond microelectrodes arrays for electrochemical detection in HPLC. Talanta 2015, 132, 641–647. 10.1016/j.talanta.2014.10.028. PubMed DOI
Wang C.; Xu J.; Zhou G.; Qu Q.; Yang G.; Hu X. Electrochemical detection coupled with high-performance liquid chromatography in pharmaceutical and biomedical analysis: a mini review. Comb. Chem. High Throughput Screening 2007, 10 (7), 547–554. 10.2174/138620707782152362. PubMed DOI
Alghamdi H.; Alsaeedi M.; Hayes P. E.; Glennon J. D. Rapid and sensitive simultaneous separation and electrochemical detection of tetracaine hydrochloride and oxymetazoline hydrochloride in pharmaceutical formulations via core-shell reversed-phase liquid chromatography. J. Pharm. Biomed. Anal. 2022, 214, 11471710.1016/j.jpba.2022.114717. PubMed DOI
Patil R. H.; Hegde R. N.; Nandibewoor S. T. Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf., B 2011, 83 (1), 133–138. 10.1016/j.colsurfb.2010.11.008. PubMed DOI
Shetti N. P.; Malode S. J.; Nayak D. S.; et al. Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchem. J. 2019, 150, 10412410.1016/j.microc.2019.104124. DOI
Kalambate P. K.; Srivastava A. K. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sens. Actuators, B 2016, 233, 237–248. 10.1016/j.snb.2016.04.063. DOI
Pushpanjali P. A.; Manjunatha J.; Hareesha N.; et al. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(L-Leucine) layered carbon nanotube paste electrode. Surf. Interfaces 2021, 24, 10115410.1016/j.surfin.2021.101154. DOI
Sawkar R. R.; Shanbhag M. M.; Tuwar S. M.; et al. Zinc Oxide-Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts 2022, 12 (10), 116610.3390/catal12101166. DOI
Górska A.; Zambrzycki M.; Paczosa-Bator B.; et al. New Electrochemical Sensor Based on Hierarchical Carbon Nanofibers with NiCo Nanoparticles and Its Application for Cetirizine Hydrochloride Determination. Materials 2022, 15 (10), 364810.3390/ma15103648. PubMed DOI PMC
Beltagi A. M.; Abdallah O. M.; Ghoneim M. M. Development of a voltammetric procedure for assay of the antihistamine drug hydroxyzine at a glassy carbon electrode: Quantification and pharmacokinetic studies. Talanta 2008, 74 (4), 851–859. 10.1016/j.talanta.2007.07.009. PubMed DOI
Uslu B.; Yílmaz N.; Özkan S. A.; et al. The study of the voltammetric behaviour of flunarizine. J. Pharm. Biomed. Anal. 1999, 21 (1), 215–220. 10.1016/S0731-7085(99)00096-5. PubMed DOI
Walker R. B.; Kanfer I. Sensitive High-Performance Liquid-Chromatographic Determination of Cyclizine and Its Demethylated Metabolite, Norcyclizine, in Biological-Fluids Using Coulometric Detection. J. Chromatogr. B: Biomed. Sci. Appl. 1995, 672 (1), 172–177. 10.1016/0378-4347(95)00202-T. PubMed DOI
Khamanga S. M.; Walker R. B. The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril. Talanta 2011, 83 (3), 1037–1049. 10.1016/j.talanta.2010.11.025. PubMed DOI
Rozsypal J.; Riman D.; Halouzka V.; et al. Use of interelectrode material transfer of nickel and copper-nickel alloy to carbon fibers to assemble miniature glucose sensors. J. Electroanal. Chem. 2018, 816, 45–53. 10.1016/j.jelechem.2018.03.039. DOI
Riman D.; Spyrou K.; Karantzalis A. E.; et al. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys. Talanta 2017, 165, 466–473. 10.1016/j.talanta.2016.12.064. PubMed DOI
Papavasileiou A. V.; Hoder T.; Medek T.; et al. Sensitive riboflavin sensing using silver nanoparticles deposited onto screen-printed electrodes via controlled-energy spark discharges. Talanta 2023, 258, 12440910.1016/j.talanta.2023.124409. PubMed DOI
Bartosova Z.; Riman D.; Jakubec P.; et al. Electrochemically pretreated carbon microfiber electrodes as sensitive HPLC-EC detectors. Sci. World J. 2012, 2012, 29580210.1100/2012/295802. PubMed DOI PMC
Malinski T.; Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 1992, 358 (6388), 676–678. 10.1038/358676a0. PubMed DOI
Dong T.; Chen L.; Shih A. Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording. J. Micro Nano-Manuf. 2020, 8 (4), 04101310.1115/1.4049780. PubMed DOI PMC
Millar J.; Pelling C. W. A. Improved methods for construction of carbon fibre electrodes for extracellular spike recording. J. Neurosci. Methods 2001, 110 (1–2), 1–8. 10.1016/S0165-0270(01)00411-3. PubMed DOI