Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- fluorescence MeSH
- fotochemické procesy * MeSH
- kinetika MeSH
- koncentrace vodíkových iontů * MeSH
- Rhodophyta chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.
Zobrazit více v PubMed
Syst Appl Microbiol. 2007 Nov;30(7):531-46 PubMed
Appl Environ Microbiol. 2006 Aug;72(8):5325-30 PubMed
Plant Physiol. 1979 Feb;63(2):375-81 PubMed
Astrobiology. 2007 Feb;7(1):252-74 PubMed
Astrobiology. 2007 Feb;7(1):222-51 PubMed
Microb Ecol. 2007 Feb;53(2):294-305 PubMed
J Exp Bot. 2000 Apr;51(345):659-68 PubMed
Plant Physiol. 1979 Jan;63(1):30-4 PubMed
Plant Physiol. 1979 Jan;63(1):20-5 PubMed
Appl Environ Microbiol. 2005 Jun;71(6):2813-23 PubMed
Science. 1966 Aug 12;153(3737):752-5 PubMed
Environ Toxicol. 2010 Dec;25(6):554-63 PubMed
Appl Environ Microbiol. 1983 Mar;45(3):755-9 PubMed
Photochem Photobiol. 2005 May-Jun;81(3):649-53 PubMed
Microb Ecol. 2001 Jan;41(1):20-35 PubMed
Microb Ecol. 1999 Aug;38(2):146-156 PubMed
Int Microbiol. 2008 Dec;11(4):251-60 PubMed
Photosynth Res. 2000;66(1-2):3-12 PubMed