A Laboratory of Extremophiles: Iceland Coordination Action for Research Activities on Life in Extreme Environments (CAREX) Field Campaign

. 2013 Feb 25 ; 3 (1) : 211-33. [epub] 20130225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25371340

Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 °C to 100 °C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO2 and H2S concentration varied at different sampling locations in the system, but the SO2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants (Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches.

Zobrazit více v PubMed

Brock T.D. Thermophilic Microorganisms and Life at High Temperatures. Springer-Verlag; New York, Heideldberg, Berlin, USA: 1978.

Madigan M.T., Martinko J.M., Dunlap P.V., Clark D. Brock Biology of Microorganisms. Pearson/Benjamin Cummings; San Francisco, CA, USA: 2009.

Kristjansson J.K., Hreggvidsson G.O. Ecology and habitats of extremophiles. World J. Microbiol. Biotechnol. 1995;11:17–25. doi: 10.1007/BF00339134. PubMed DOI

Baldantoni D., Ligrone R., Alfani A. Macro- and trace-element concentrations in leaves and roots of Phragmitesaustralis in a volcanic lake in Southern Italy. J. Geochem. Explor. 2009;101:166–174. doi: 10.1016/j.gexplo.2008.06.007. DOI

Prieur D., Erauso G., Jeanthon C. Hyperthermophiliclifa at deep-sea hydrothermal vents Planet. Space Sci. 1995;43:115–122. doi: 10.1016/0032-0633(94)00143-F. PubMed DOI

Kristjansson J.K., Stetter K. Thermophilic Bacteria. CRC Press; Boca Raton, FL, USA: 1992. Thermophilic bacteria; pp. 1–18.

Skirnisdottir S., Hreggvidsson G.O., Hjorleifsdottir S., Marteinsson V.T., Petursdottir S.K., Holst O., Kristjansson J.K. Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 2000;66:2835–2841. PubMed PMC

Ellis-Evans C., Walter N. Coordination action for research activities on life in extreme environments–The CAREX project. J. Biol. Res. Thessalon. 2008;9:11–15.

Gomez F., Walter N., Amils R., Rull F., Klingelhofer A.K., Kviderova J., Sarrazin P., Foing B., Behar A., Fleischer I., Parro V., et al. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto. Int. J. Astrobiol. 2011;10:291–305. doi: 10.1017/S147355041100005X. DOI

Lopez-Archilla A.I., Marin I., Amils R. Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microbial Ecol. 2001;41:20–35. PubMed

Kviderova J. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient. Origins Life Evol. B. 2012;42:223–234. doi: 10.1007/s11084-012-9284-3. PubMed DOI

Schreiber U., Bilger W., Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assesment of in vivo photosynthesis. In: Schulze E.D., Caldwell M.M., editors. Ecophysiology of Photosynthesis. Springer-Verlag; Berlin, Heildelberg, New York, NY, USA: 1995. pp. 47–70.

Monson R.K., Holland E.A. Biospheric trace gas fluxes and their control over tropospheric chemistry. Annu. Rev. Ecol. Sys. 2001;32:547–276. doi: 10.1146/annurev.ecolsys.32.081501.114136. DOI

Medori M., Michelini L., Nogues I., Loreto F., Calfapietra C. The Impact of Root Temperature on Photosynthesis and Isoprene Emission in Three Different Plant Species. Sci. World J. 2012 doi: 10.1100/2012/525827. PubMed DOI PMC

Eilers T., Schwarz G., Brinkmann H., Witt C., Richter T., Nieder J., Koch B., Hille R., Hansch R., Mendel R.R. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J. Biol. Chem. 2001;276:46989–46994. PubMed

Lee H.-F., Yang T.F., Lan T.F., Song S.-R., Tsao S. Fumarolic Gas Composition of the Tatun Volcano Group, Northern Taiwan. TAO. 2005;16:843–864.

Kristmannsdottir H., Sigurgeirsson M., Armannsson H., Hjartarson H., Olafsson M. Sulfur gas emissions from geothermal power plants in Iceland. Geothermics. 2000;29:525–538. doi: 10.1016/S0375-6505(00)00020-1. DOI

Rennenberg H. The fate of excess sulphur in higher plants. Annu. Rev. Plant Physiol. 1984;35:121–153. doi: 10.1146/annurev.pp.35.060184.001005. DOI

Gich F., Janys M.A., Konig M., Overmann J. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ. Microbiol. 2012;14:2984–2997. doi: 10.1111/j.1462-2920.2012.02868.x. PubMed DOI

Krebs J., Vaishampayan P., Probst A.J., Tom L., Marteinsson V., Andersen G.L., Venkateswaran K. Microbial community structures in Icelandic hot springs systems revealed by PhyloChip G3 analysis. Int. Soc. Microb. Ecol. J. 2013 in press. PubMed

Bohlar-Nordenkampf H.R., Long S.P., Baker N.R., Öquist G., Schreiber U., Lechner E.G. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 1989;4:497–514.

Maxwell K., Johnson G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI

Roháček K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning and mutual relationship. Photosynthetica. 2002;40:13–29. doi: 10.1023/A:1020125719386. DOI

Souza-Egipsy V., Altamirano M., Amils R., Aguilera A. Photosynthetic performance of phototrophic biofilms in extreme acidic environments. Environ. Microbiol. 2011;13:2351–2358. PubMed

Edwards G.E., Walker D.A. C3, C4 Mechanisms and Cellular and Environmental Regulation of Photosynthesis. Blackwell Sci. Pub.; Oxford, UK: 1983. PubMed

Borin S., Brusetti L., Mapelli F., D’Auria G., Brusa T., Marzorati M., Rizzi A., Yakimov M., Marty D., de Lange G.J., et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidicUrania deep hypersaline basin. Proc. Natl. Acad. Sci.USA. 2009;106:9151–9156. PubMed PMC

Daffonchio D., Cherif A., Brusetti L., Rizzi A., Mora D., Boudabous A., Borin S. Nature of polymorphisms in 16S–23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. Appl. Environ. Microbiol. 2003;69:5128–5137. PubMed PMC

Marasco R., Rolli E., Ettoumi B., Vigani G., Mapelli F., Borin S., Abou-Hadid A.F., El-Behairy U.A., Sorlini C., Cherif A., et al. A drought resistance—Promoting microbiome is selected by root system under desert farming. Plos One. 2012;7:e48479. PubMed PMC

Venkateswaran K., Hattori N., La Duc M.T., Kern R. ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 2003;52:367–377. doi: 10.1016/S0167-7012(02)00192-6. PubMed DOI

La Duc M.T., Osman S., Venkateswaran K. Comparative analysis of methods for the purification of DNA from low biomass samples based on total yield and conserved microbial diveristiy. J. Rapid Meth. Aut. Microbiol. 2009;17:350–368.

Suzuki M.T., Taylor L.T., DeLong E.F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol. 2000;66:4605–4614. doi: 10.1128/AEM.66.11.4605-4614.2000. PubMed DOI PMC

Wilson K.H., Wilson W.J., Radosevich J.L., DeSantis T.Z., Viswanathan V.S., Kuczmarski T.A., Andersen G.L. High-density microarray of small-subunit ribosomal DNA probes. Appl. Environ. Microbiol. 2002;68:2535–2541. doi: 10.1128/AEM.68.5.2535-2541.2002. PubMed DOI PMC

Flanagan J.L., Brodie E.L., Weng L., Lynch S.V., Garcia O., Brown R., Hugenholtz P., DeSantis T.Z., Andersen G.L., Wiener-Kronish J.P., et al. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 2007;45:1954–1962. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...