• This record comes from PubMed

Sugar-modified derivatives of cytostatic 7-(het)aryl-7-deazaadenosines: 2'-C-methylribonucleosides, 2'-deoxy-2'-fluoroarabinonucleosides, arabinonucleosides and 2'-deoxyribonucleosides

. 2012 Sep 01 ; 20 (17) : 5202-14. [epub] 20120720

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 22877872
DOI 10.1016/j.bmc.2012.07.003
PII: S0968-0896(12)00546-9
Knihovny.cz E-resources

A series of novel sugar-modified derivatives of cytostatic 7-hetaryl-7-deazaadenosines (2'-C-methylribonucleosides, 2'-deoxy-2'-fluoroarabinonucleosides, arabinonucleosides and 2'-deoxyribonucleosides) was prepared and screened for biological activity. The synthesis consisted of preparation of the corresponding sugar-modified 7-iodo-7-deazaadenine nucleosides and their aqueous-phase Suzuki-Miyaura cross-coupling reactions with (het)arylboronic acids or Stille couplings with hetarylstannanes in DMF. The synthesis of 7-iodo-7-deazaadenine nucleosides was based on a glycosidation of 6-chloro-7-iodo-7-deazapurine with a suitable sugar synthon or on an interconversion of 2'-OH stereocenter (for arabinonucleosides). Several examples of 2'-C-Me-ribonucleosides showed moderate anti-HCV activities in a replicon assay accompanied by cytotoxicity. Several 7-hetaryl-7-deazaadenine fluoroarabino- and arabinonucleosides exerted moderate micromolar cytostatic effects. The most active was 7-ethynyl-7-deazaadenine fluoroarabinonucleoside which showed submicromolar antiproliferative activity. However, all the sugar-modified derivatives were less active than the parent ribonucleosides.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...