Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- amidohydrolasy metabolismus MeSH
- amidy metabolismus toxicita MeSH
- benzamidy metabolismus MeSH
- biotransformace MeSH
- dehydratasy metabolismus MeSH
- herbicidy chemie metabolismus MeSH
- hydrolýza MeSH
- jodbenzeny metabolismus MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- nitrily chemie metabolismus toxicita MeSH
- Rhodococcus metabolismus MeSH
- salát (hlávkový) účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2,6-dichlorobenzamide MeSH Prohlížeč
- amidase MeSH Prohlížeč
- amidohydrolasy MeSH
- amidy MeSH
- benzamidy MeSH
- benzonitrile MeSH Prohlížeč
- bromoxynil MeSH Prohlížeč
- chloroxynil MeSH Prohlížeč
- dehydratasy MeSH
- dichlobanil MeSH Prohlížeč
- herbicidy MeSH
- ioxynil MeSH Prohlížeč
- jodbenzeny MeSH
- nitrile hydratase MeSH Prohlížeč
- nitrily MeSH
The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.
Zobrazit více v PubMed
Appl Environ Microbiol. 1976 Jun;31(6):900-6 PubMed
Environ Pollut. 2010 Jan;158(1):292-8 PubMed
Environ Pollut. 2008 Jul;154(2):155-68 PubMed
Biochemistry. 2003 Oct 21;42(41):12056-66 PubMed
J Biol Chem. 1988 May 5;263(13):6310-4 PubMed
Appl Environ Microbiol. 2003 Oct;69(10):5754-66 PubMed
J Clin Microbiol. 1996 Jan;34(1):98-102 PubMed
Appl Environ Microbiol. 1998 Aug;64(8):2844-52 PubMed
Biodegradation. 2010 Sep;21(5):761-70 PubMed
Biochem Biophys Res Commun. 2007 Oct 19;362(2):319-24 PubMed
Can J Microbiol. 1974 May;20(5):773-6 PubMed
Environ Int. 2009 Jan;35(1):162-77 PubMed
Pest Manag Sci. 2007 Feb;63(2):141-9 PubMed
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4267-72 PubMed
Environ Pollut. 2006 Nov;144(1):289-95 PubMed
Folia Microbiol (Praha). 1992;37(2):122-7 PubMed
Indian J Microbiol. 2009 Sep;49(3):237-42 PubMed
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 PubMed
Biodegradation. 2006 Dec;17(6):503-10 PubMed
Appl Microbiol Biotechnol. 2007 Mar;74(3):535-9 PubMed
Genome Biol. 2001;2(1):REVIEWS0001 PubMed
J Biol Chem. 1996 Jun 28;271(26):15796-802 PubMed
Int J Biochem. 1985;17(6):677-83 PubMed
Appl Environ Microbiol. 2007 Jan;73(2):399-406 PubMed
Appl Environ Microbiol. 1986 Aug;52(2):325-30 PubMed
Environ Pollut. 2010 Dec;158(12):3618-25 PubMed
A comparative study of nitrilases identified by genome mining