Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Amidohydrolases metabolism MeSH
- Amides metabolism toxicity MeSH
- Benzamides metabolism MeSH
- Biotransformation MeSH
- Hydro-Lyases metabolism MeSH
- Herbicides chemistry metabolism MeSH
- Hydrolysis MeSH
- Iodobenzenes metabolism MeSH
- Plant Roots drug effects growth & development metabolism MeSH
- Nitriles chemistry metabolism toxicity MeSH
- Rhodococcus metabolism MeSH
- Lactuca drug effects growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2,6-dichlorobenzamide MeSH Browser
- amidase MeSH Browser
- Amidohydrolases MeSH
- Amides MeSH
- Benzamides MeSH
- benzonitrile MeSH Browser
- bromoxynil MeSH Browser
- chloroxynil MeSH Browser
- Hydro-Lyases MeSH
- dichlobanil MeSH Browser
- Herbicides MeSH
- ioxynil MeSH Browser
- Iodobenzenes MeSH
- nitrile hydratase MeSH Browser
- Nitriles MeSH
The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.
See more in PubMed
Appl Environ Microbiol. 1976 Jun;31(6):900-6 PubMed
Environ Pollut. 2010 Jan;158(1):292-8 PubMed
Environ Pollut. 2008 Jul;154(2):155-68 PubMed
Biochemistry. 2003 Oct 21;42(41):12056-66 PubMed
J Biol Chem. 1988 May 5;263(13):6310-4 PubMed
Appl Environ Microbiol. 2003 Oct;69(10):5754-66 PubMed
J Clin Microbiol. 1996 Jan;34(1):98-102 PubMed
Appl Environ Microbiol. 1998 Aug;64(8):2844-52 PubMed
Biodegradation. 2010 Sep;21(5):761-70 PubMed
Biochem Biophys Res Commun. 2007 Oct 19;362(2):319-24 PubMed
Can J Microbiol. 1974 May;20(5):773-6 PubMed
Environ Int. 2009 Jan;35(1):162-77 PubMed
Pest Manag Sci. 2007 Feb;63(2):141-9 PubMed
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4267-72 PubMed
Environ Pollut. 2006 Nov;144(1):289-95 PubMed
Folia Microbiol (Praha). 1992;37(2):122-7 PubMed
Indian J Microbiol. 2009 Sep;49(3):237-42 PubMed
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38 PubMed
Biodegradation. 2006 Dec;17(6):503-10 PubMed
Appl Microbiol Biotechnol. 2007 Mar;74(3):535-9 PubMed
Genome Biol. 2001;2(1):REVIEWS0001 PubMed
J Biol Chem. 1996 Jun 28;271(26):15796-802 PubMed
Int J Biochem. 1985;17(6):677-83 PubMed
Appl Environ Microbiol. 2007 Jan;73(2):399-406 PubMed
Appl Environ Microbiol. 1986 Aug;52(2):325-30 PubMed
Environ Pollut. 2010 Dec;158(12):3618-25 PubMed
A comparative study of nitrilases identified by genome mining