Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22931215
PubMed Central
PMC3477048
DOI
10.1186/1475-925x-11-62
PII: 1475-925X-11-62
Knihovny.cz E-zdroje
- MeSH
- analýza metodou konečných prvků * MeSH
- aneurysma břišní aorty patofyziologie MeSH
- krevní tlak MeSH
- lidé MeSH
- mechanický stres * MeSH
- poréznost MeSH
- pružnost * MeSH
- trombóza patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The predictions of stress fields in Abdominal Aortic Aneurysm (AAA) depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT). ILT is a porous diluted structure (biphasic solid-fluid material) and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements showed that the ILT cannot protect the wall from the arterial pressure, while other (numerical and experimental) studies showed that at the same time it reduces the stress in the wall. METHOD: To explore this phenomenon further a poroelastic description of the ILT was integrated in Finite Element (FE) Models of the AAA. The AAA model was loaded by a pressure step and a cyclic pressure wave and their transition into wall tension was investigated. To this end ILT's permeability was varied within a microstructurally motivated range. RESULTS: The two-phase model verified that the ILT transmits the entire mean arterial pressure to the wall while, at the same time, it significantly reduces the stress in the wall. The predicted mean stress in the AAA wall was insensitive to the permeability of the ILT and coincided with the results of AAA models using a single-phase ILT description. CONCLUSION: At steady state, the biphasic ILT behaves like a single-phase material in an AAA model. Consequently, computational efficient FE single-phase models, as they have been exclusively used in the past, accurately predict the wall stress in AAA models.
Zobrazit více v PubMed
Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW. et al.Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002;346:1437–1444. doi: 10.1056/NEJMoa012573. PubMed DOI
The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 1998;352:1649–1655. PubMed
Heikkinen M, Salenius JP, Auvinen O. Ruptured abdominal aortic aneurysm in a well-defined geographic area. J Vasc Surg. 2002;36:291–296. PubMed
Nicholls SC, Gardner JB, Meissner MH, Johansen HK. Rupture in small abdominal aortic aneurysms. J Vasc Surg. 1998;28:884–888. doi: 10.1016/S0741-5214(98)70065-5. PubMed DOI
Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002;36:589–597. doi: 10.1067/mva.2002.125478. PubMed DOI
Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G. et al.A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;28:168–176. PubMed
Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 2010;40:176–185. doi: 10.1016/j.ejvs.2010.04.003. PubMed DOI
van de Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A Biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment. Ann NY Acad Sci. 2006;1085:11–21. doi: 10.1196/annals.1383.046. PubMed DOI
Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A Comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010;38:3124–3134. doi: 10.1007/s10439-010-0067-6. PubMed DOI
Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41:584–588. doi: 10.1016/j.jvs.2005.01.004. PubMed DOI
Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg. 1997;25(5):916–926. doi: 10.1016/S0741-5214(97)70223-4. PubMed DOI
Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U. et al.Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38:1283–1292. doi: 10.1016/S0741-5214(03)00791-2. PubMed DOI
Folkesson M, Kazi M, Zhu C, Silveira A, Hemdahl AL, Hamsten A, Hedin U, Swedenborg J, Eriksson P. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb Haemost. 2007;98:427–433. PubMed
Karsaj I, Humhrey JD. A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology. 2009;46:509–527. PubMed PMC
Gasser TC, Martufi G, Auer M, Folkesson M, Swedenborg J. Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Ann Biomed Eng. 2010;38:371–379. doi: 10.1007/s10439-009-9837-4. PubMed DOI
Collet JP. The elasticity of an individual fibrin fiber in a clot. PNAS. 2005;102:9133–9137. doi: 10.1073/pnas.0504120102. PubMed DOI PMC
Schurink GW, van Baalen JM, Visser MJ, van Bockel JH. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg. 2000;31:501–506. doi: 10.1016/S0741-5214(00)90311-2. PubMed DOI
Ashton JH, VandeGeest JP, Simon BR, Haskett DG. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech. 2009;42:197–201. doi: 10.1016/j.jbiomech.2008.10.024. PubMed DOI PMC
di Martino ES, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R. et al.Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterization and structural static computational analysis. Eur J Vasc Endovasc Surg. 1998;15:290–299. doi: 10.1016/S1078-5884(98)80031-2. PubMed DOI
Gasser TC, Gorgulu G, Folkesson M, Swedenborg J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg. 2008;48:179–188. doi: 10.1016/j.jvs.2008.01.036. PubMed DOI
Van Dam EA, Dams SD, Peters GWM, Rutten MCM, Schurink GWH, Buth J. et al.Nonlinear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol. 2008;2:127–137. PubMed PMC
Wang DH, Makaroun MS, Webster MW, Vorp DA. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng. 2001;123:536–539. doi: 10.1115/1.1411971. PubMed DOI
Thubrikar MJ. Effect of thrombus on abdominal aortic aneurysm wall dilatation and stress. J Cardiovasc Surg. 2003;44:67–77. PubMed
Hinnen JW, Koning OH, Visser MJ, Van Bockel HJ. Effect of intraluminal thrombus on pressure transmission in the abdominal aortic aneurysm. J Vasc Surg. 2005;42:1176–1182. doi: 10.1016/j.jvs.2005.08.027. PubMed DOI
Wang DH, Makaroun MS, Webster MW, Vorp DA. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 2002;36:598–604. doi: 10.1067/mva.2002.126087. PubMed DOI
Li Z-Y, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg. 2008;47:928–935. doi: 10.1016/j.jvs.2008.01.006. PubMed DOI
Doyle BJ, Callanan A, McGloughlin TM. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng Online. 2007;6:38. doi: 10.1186/1475-925X-6-38. PubMed DOI PMC
Mower WR, Quiñones WJ, Gambhir SS. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg. 1997;33:602–608. PubMed
Almeida ES, Spilker RL. Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformations: Part I – Alternate formulations. Comput Meth Biomech Biomed Eng. 1997;1:25–46. doi: 10.1080/01495739708936693. PubMed DOI
Ehlers W, Markert B. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media. J Biomech Eng. 2001;123:418–424. doi: 10.1115/1.1388292. PubMed DOI
Huyghe JM, Arts T, van Campen DH, Reneman RS. Porous medium finite element model of the beating left ventricle. Am J Physiol Heart Circ Physiol. 1992;262:1256–1267. PubMed
Lai WM, Mow VC, Zhu W. Constitutive modeling of articular cartilage and biomacromolecular solutions. J Biomech Eng. 1993;115:474–480. doi: 10.1115/1.2895527. PubMed DOI
Simon BR, Gaballa MA. Finite strain, poroelastic finite element models for large arterial cross sections. Comput Meth Biomech Biomed Eng. 1988;9:325–333.
Ayyalasomayajula A, Vande Geest JP, Simon BR. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng. 2010;132:104502. doi: 10.1115/1.4002370. PubMed DOI
Vande Geest JP, Simon BR, Rigby PH, Newberg TP. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS. J Biomech Eng. 2011;133:044502. doi: 10.1115/1.4003489. PubMed DOI
Biot MA. General theory of three-dimensional consolidation. J Appl Phys. 1941;12:155–164. doi: 10.1063/1.1712886. DOI
Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys. 1955;27:459–467.
Vande Geest JP, Sacks MS, Vorp DA. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech. 2006;39:2347–2354. doi: 10.1016/j.jbiomech.2006.05.011. PubMed DOI
Fung YC, Tong P. Classical and computational solid mechanics (Advanced Series in Engineering Science) Singapore: World Scientific; 2001.
Markert B. A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 2007;70:427–450. doi: 10.1007/s11242-007-9107-6. DOI
Detournay E, Cheng AHD. In: Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method. Fairhurst C, editor. Oxford: Pergamon Press; 1993. Fundamentals of poroelasticity“ Chapter 5; pp. 113–171.
Harrison RG, Massaro TA. Water flux through porcine aortic tissue due to a hydrostatic pressure gradient. Atherosclerosis. 1976;24:363–367. doi: 10.1016/0021-9150(76)90128-3. PubMed DOI
Yeoh OH. Some forms of strain energy functions for rubber. Rubber Chem Technol. 1993;66:754–771. doi: 10.5254/1.3538343. DOI
Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng. 1997;24:573–582. PubMed
Shadden SC, Taylor CA. Characterization of coherent structures in the cardiovascular system. Ann Biomed Eng. 2008;36:1152–1162. doi: 10.1007/s10439-008-9502-3. PubMed DOI PMC
Gebart BR. Permeability of unidirectional reinforcements for RTM. J Compos Mater. 1992;26:1100–1133. doi: 10.1177/002199839202600802. DOI
Nabovati A, Llewelin E, Sousa ACM. A general model for permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites: Part A. 2009;40:860–869. doi: 10.1016/j.compositesa.2009.04.009. DOI
Collagen FP. Structure and mechanics. New York: Springer; 2008. p. 508.
Ryan AE. Structural origins of Fibrin clot rheology. Biophys J. 1999;77:2813–2826. doi: 10.1016/S0006-3495(99)77113-4. PubMed DOI PMC
Biasetti J, Gasser TC, Auer M, Hedin U, Labruto F. Hemodynamics of the normal aorta compared to fusiform and sacular abdominal aortic aneurysms with emphasis on the potential thrombus formation mechanism. Ann Biomed Eng. 2010;2:380–390. PubMed
Rogers WJ. Age-associated changes in regional aortic pulse wave velocity. JACC. 2001;38:1123–1129. PubMed
Truijers M, Fillinger MF, Renema KW, Marra SP, Oostveen LJ, Kurvers HAJM. et al.In-Vivo Imaging of changes in abdominal aortic aneurysm thrombus volume during the cardiac cycle. J Endovasc Ther. 2009;16:314–319. doi: 10.1583/08-2625.1. PubMed DOI
Ogden RW. Non-linear Elastic Deformations. New York: Dover; 1997.
Meyer CA, Guivier-Curien C, Moore JE Jr. Trans-thrombus blood Pressure effects in abdominal aortic aneurysms. J Biomech Eng. 2010;132:071005. doi: 10.1115/1.4001253. PubMed DOI
Lai WM, Mow VC, Roth V. Effects of nonlinear strain-dependent permeability ans rate of compression on the stress behavior of articular cartilage. J Biom Eng. 1981;103:61–66. doi: 10.1115/1.3138261. PubMed DOI
Speelman L, Schurink GWH, Bosboom EMH, Buth J, Breeuwer M, van de Vosse FN. et al.The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg. 2010;51:19–26. doi: 10.1016/j.jvs.2009.08.075. PubMed DOI
Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 2000;33:475–482. doi: 10.1016/S0021-9290(99)00201-8. PubMed DOI
Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39:1324–1334. doi: 10.1016/j.jbiomech.2005.03.003. PubMed DOI