Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26631334
PubMed Central
PMC4707859
DOI
10.1098/rsif.2015.0852
PII: rsif.2015.0852
Knihovny.cz E-zdroje
- Klíčová slova
- abdominal aortic aneurysm, failure, model finite element, uncertainty, wall stress,
- MeSH
- aneurysma břišní aorty * patologie patofyziologie MeSH
- biomechanika MeSH
- hodnocení rizik MeSH
- lidé MeSH
- modely kardiovaskulární * MeSH
- ruptura aorty * patologie patofyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach.
Zobrazit více v PubMed
Fleming C, Whitlock EP, Beil TL, Lederle FA. 2005. Screening for abdominal aortic aneurysm: a best-evidence systematic review for the US. Preventive Services Task Force. Ann. Intern. Med. 142, 203–211. (10.7326/0003-4819-142-3-200502010-00012) PubMed DOI
The UK Small Aneurysm Trial Participants. 1998. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352, 1649–1655. (10.1016/S0140-6736(98)10137-X) PubMed DOI
Greenhalgh RM, Powell JT. 2008. Endovascular repair of abdominal aortic aneurysm. N. Engl. J. Med. 358, 494–501. (10.1056/NEJMct0707524) PubMed DOI
Nicholls SC, Gardner JB, Meissner MH, Johansen HK. 1998. Rupture in small abdominal aortic aneurysms. J. Vasc. Surg. 28, 884–888. (10.1016/S0741-5214(98)70065-5) PubMed DOI
Darling RC, Messina CR, Brewster DC, Ottinger LW. 1977. Autopsy study of unoperated abdominal aortic aneurysms. Circulation 56(II Suppl.), 161–164. PubMed
Nchimi A et al. . 2014. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ.: Cardiovasc. Imag. 7, 82–91. (10.1161/CIRCIMAGING.112.000415) PubMed DOI
Reeps C, Maier A, Pelisek J, Hartl F, Grabher-Maier V, Wall WA, Essler M, Eckstein HH, Gee MW. 2013. Measuring and modeling patient-specific distributions of material properties in abdominal aortic wall. Biomech. Model Mechanobiol. 12, 717–733. (10.1007/s10237-012-0436-1) PubMed DOI
Maier A. 2012. Computational modeling of rupture risk in abdominal aortic aneurysms. PhD thesis, Technical University Munich.
Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW. 2001. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34, 291–299. (10.1067/mva.2001.114813). PubMed DOI
Fillinger MF, Raghavan ML, Marra SP, Cronenwett J-L, Kennedy FE. 2002. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36, 589–597. (10.1067/mva.2002.125478) PubMed DOI
Vorp DA. 2007. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902. (10.1016/j.jbiomech.2006.09.003) PubMed DOI PMC
Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. 2014. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Brit. J. Surg. 101, 1350–1357. (10.1002/bjs.9578) PubMed DOI
Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. 2010. Biomechanical. Rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40, 176–185. (10.1016/j.ejvs.2010.04.003) PubMed DOI
Erhart P, Hyhlik-Dürr A, Geisbüsch P, Kotelis D, Müller-Eschner M, Gasser TC, von Tengg-Kobligk H, Böckler D. 2015. Finite element analysis in asymptomatic, symptomatic and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Eur. J. Vasc. Endovasc. Surg. 49, 239–245. (10.1016/j.ejvs.2014.11.010) PubMed DOI
Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Böckler D, Hyhlik-Dürr A. 2014. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur. J. Vasc. Endovasc. Surg. 47, 288–295. (10.1016/j.ejvs.2013.12.018) PubMed DOI
Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. 2010. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38, 3124–3134. (10.1007/s10439-010-0067-6) PubMed DOI
Riveros F, Chandra S, Finol EA, Gasser TC, Rodriguez JF. 2013. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann. Biomed. Eng. 41, 694–708. (10.1007/s10439-012-0712-3). PubMed DOI
de Putter S, Wolters BJBM, Ruttena MCM, Breeuwer M, Gerritsen FA, van de Vosse FN. 2006. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40, 1081–1090. (10.1016/j.jbiomech.2006.04.019) PubMed DOI
Gee MW, Foerster CH, Wall WA. 2010. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int. J. Num. Meth. Biomed. Eng. 26, 52–72. (10.1002/cnm.1236) DOI
Polzer S, Gasser TC, Bursa J, Staffa R, Vlachovsky R, Man V, Skacel P. 2013. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med. Eng. Phys. 35, 1282–1289. (10.1016/j.medengphy.2013.01.008) PubMed DOI
Polzer S, Bursa J, Gasser TC, Staffa R, Vlachovsky R. 2013. A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann. Biomed. Eng. 41, 1516–1527. (10.1007/s10439-013-0749-y) PubMed DOI
Speelman L, Bohra A, Bosboom EM, Schurink GW, van de Vosse FN, Makaorun MS, Vorp DA. 2007. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J. Biomech. Eng. 129, 105–109. (10.1115/1.2401189) PubMed DOI
O'Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. 2015. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J. Mech. Behav. Biomed. Mater. 42, 154–167. (10.1016/j.jmbbm.2014.11.005) PubMed DOI
Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. 2008. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36, 921–932. (10.1007/s10439-008-9490-3) PubMed DOI PMC
Ayyalasomayajula A, Vande Geest JP, Simon BR. 2010. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. Eng. 132, 104502 (10.1115/1.4002370) PubMed DOI
Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. 2012. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. BioMed. Eng. Online 11, 62 (10.1186/1475-925X-11-62) PubMed DOI PMC
Chandra S, Raut SS, Jana A, Biederman RW, Doyle M, Muluk SC, Finol EA. 2013. Fluid–structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. 135, 81001 (10.1115/1.4024275) PubMed DOI PMC
Xenos M, Labropoulos N, Rambhia S, Alemu Y, Einav S, Tassiopoulos A, Sakalihasan N, Bluestein D. 2015. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid–structure interaction method. Ann. Biomed. Eng. 43, 139–153. (10.1007/s10439-014-1224-0) PubMed DOI PMC
Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. 2010. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J. Vasc. Surg. 51, 679–688. (10.1016/j.jvs.2009.10.048) PubMed DOI
Auer M, Gasser TC. 2010. Automatic reconstruction and finite element mesh generation of abdominal aortic aneurysms. IEEE Trans. Med. Imag 29, 1022–1028. (10.1109/TMI.2009.2039579) PubMed DOI
Doyle BJ, Killion J, Callanan A. 2012. Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models. J. Biomech. 45, 1759–1768. (10.1016/j.jbiomech.2012.05.004) PubMed DOI
Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D. 2011. Reproducibility of aortic diameter, volume, peak wall stress, and peak rupture risk index using semiautomatic finite element analyses of infrarenal aortic aneurysms. J. Endovasc. Ther. 18, 289–298. (10.1583/10-3384MR.1) PubMed DOI
Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Böckler D, Hyhlik-Dürr A. 2014. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J. Endovasc. Ther. 21, 556–564. (10.1583/14-4695.1) PubMed DOI
Maier A, Essler M, Gee MW, Eckstein HH, Wall WA, Reeps C. 2012. Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18F]-fluorodeoxyglucose-PET/CT. J. Numer. Method Biomed. Eng. 28, 456–471. (10.1002/cnm.1477) PubMed DOI
Dersjö T, Olsson M. 2011. Reliability based design optimization using a single constraint approximation point. J. Mech. Des. 133, 031006 (10.1115/1.4003410) DOI
Patrick DT. 2002. Practical reliability engineering, 4th edn New York, NY: John Wiley & Sons.
Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J. 2003. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38, 1283–1292. (10.1016/S0741-5214(03)00791-2) PubMed DOI
Simo JC, Taylor RL. 1991. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Eng. 85, 273–310. (10.1016/0045-7825(91)90100-K) DOI
Raghavan ML, Vorp DA. 2000. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482. (10.1016/S0021-9290(99)00201-8) PubMed DOI
Gasser TC, Gorgulu G, Folkesson M, Swedenborg J. 2008. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48, 179–188. (10.1016/j.jvs.2008.01.036) PubMed DOI
Choke E, Cockerill G, Wilson WR, Sayed S, Dawson J, Loftus I, Thompson MM. 2005. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30, 227–244. (10.1016/j.ejvs.2005.03.009) PubMed DOI
Vande Geest JP, Sacks MS, Vorp DA. 2006. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334. (10.1016/j.jbiomech.2005.03.003) PubMed DOI
Yeoh OH. 1993. Some forms of strain energy functions for rubber. Rubber Chem. Technol. 66, 754–771. (10.5254/1.3538343) DOI
Wang DH, Makaroun MS, Webster MW, Vorp DA. 2001. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123, 536–539. (10.1115/1.1411971). PubMed DOI
Ogden RW. 1984. Non-linear elastic deformations. Chichester: Ellis Horwood. Reprinted 1997, New York: Dover Publications.
Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. 1997. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25, 916–926. (10.1016/S0741-5214(97)70223-4) PubMed DOI
Takamizawa K, Hayashi K. 1987. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17. (10.1016/0021-9290(87)90262-4) PubMed DOI
Fung YC. 1991. What are residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19, 237–249. (10.1007/BF02584301) PubMed DOI
Martufi G, Gasser TC. 2012. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J. R. Soc. Interface 9, 3366–3377. (10.1098/rsif.2012.0416) PubMed DOI PMC
Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA. 2006. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34, 1098–1106. (10.1007/s10439-006-9132-6) PubMed DOI
Brewster DC, Cronenwett JL, Hallett JW, Johnston KW, Krupski WC, Matsumura JS. 2003. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J. Vasc. Surg. 37, 1106–1117. (10.1067/mva.2003.363) PubMed DOI
Biehler J, Gee MW, Wall WA. 2014. Towards efficient uncertainty quantification in complex and large scale biomechanical problems based on a Bayesian multi fidelity scheme. Biomech. Model. Mechanobiol. 14, 489–513. (10.1007/s10237-014-0618-0) PubMed DOI
Di Martino ES, Vorp DA. 2003. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31, 804–809. (10.1114/1.1581880) PubMed DOI
Shang EK, Nathan DP, Fairman RM, Woo EY, Wang GJ, Gorman RC, Gorman JH III, Jackson BM. 2015. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J. Vasc. Surg. 61, 217–223. (10.1016/j.jvs.2013.08.032) PubMed DOI PMC
Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA. 2013. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135, 081010 (10.1115/1.4024578) PubMed DOI PMC
Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. 2015. Local quantification of wall thickness and intraluminal thrombus offer insight into the mechanical properties of the aneurysmal aorta. Ann. Biomed. Eng. 43, 1759–1771. (10.1007/s10439-014-1222-2) PubMed DOI
Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. 2009. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 31, 061015 (10.1115/1.3127256) PubMed DOI
Watton PN, Hill NA. 2009. Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 8, 25–42. (10.1007/s10237-007-0115-9) PubMed DOI
Baek S, Rajagopal KR, Humphrey JD. 2006. A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128, 142–149. (10.1007/s10237-007-0115-9) PubMed DOI
Volokha KY, Vorp DA. 2008. A model of growth and rupture of abdominal aortic aneurysm. J. Biomech. 41, 1015–1021. (10.1016/j.jbiomech.2007.12.014) PubMed DOI
Martufi G, Auer M, Roy J, Swedenborg J, Sakalihasan N, Panuccio G, Gasser TC. 2013. Multidimensional growth measurements of abdominal aortic aneurysms. J. Vasc. Surg. 58, 748–755. (10.1016/j.jvs.2012.11.070) PubMed DOI
Romo A, Badel P, Duprey A, Favre JP, Avril S. 2014. In vitro analysis of localized aneurysm rupture. J. Biomech. 47, 607–616. (10.1016/j.jbiomech.2013.12.012) PubMed DOI
Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun M, Vorp DA. 2006. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43, 570–576. (10.1016/j.jvs.2005.10.072) PubMed DOI
Forsell C, Swedenborg J, Roy J, Gasser TC. 2013. The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental-numerical approach. Ann. Biomed. Eng. 41, 1554–1566. (10.1007/s10439-012-0711-4) PubMed DOI
Forsell C, Björck HM, Eriksson P, Franco-Cereceda A, Gasser TC. 2014. Biomechanical properties of the thoracic aneurysmal wall; differences between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) patients. Ann. Thor. Surg. 98, 65–71. (10.1016/j.athoracsur.2014.04.042) PubMed DOI
Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J. 2012. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics. Acta Biomater. 8, 3091–3103. (10.1016/j.actbio.2012.04.044) PubMed DOI