Contact pressure explains half of the abdominal aortic aneurysms wall thickness inter-study variability

. 2024 ; 19 (12) : e0314368. [epub] 20241202

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39621730

The stochastic rupture risk assessment of an abdominal aortic aneurysm (AAA) critically depends on sufficient data set size that would allow for the proper distribution estimate. However, in most published cases, the data sets comprise no more than 100 samples, which is deemed insufficient to describe the tails of AAA wall thickness distribution correctly. In this study, we propose a stochastic Bayesian model to merge thickness data from various groups. The thickness data adapted from the literature were supplemented by additional data from 81 patients. The wall thickness was measured at two different contact pressures for 34 cases, which allowed us to estimate the radial stiffness. Herein, the proposed stochastic model is formulated to predict the undeformed wall thickness. Furthermore, the model is able to handle data published solely as summary statistics. After accounting for the different contact pressures, the differences in the medians reported by individual groups decreased by 45%. Combined data can be fitted with a lognormal distribution with parameters μ = 0.85 and σ = 0.32 which can be further used in stochastic analyses.

Zobrazit více v PubMed

Hoornweg LL, Storm-Versloot MN, Ubbink DT, Koelemay MJW, Legemate DA, Balm R. Meta Analysis on Mortality of Ruptured Abdominal Aortic Aneurysms. European Journal of Vascular and Endovascular Surgery. 2008;35(5):558–70. doi: 10.1016/j.ejvs.2007.11.019 PubMed DOI

Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T, et al.. Editor’s Choice–European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery [Internet]. 2019;57(1):8–93. Available from: doi: 10.1016/j.ejvs.2018.09.020 PubMed DOI

Lederle F a, Johnson GR, Wilson SE Ballard DJ, Jordan WD, Blebea J, et al.. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA : the journal of the American Medical Association. 2002;287(22):2968–72. PubMed

Polzer S, Gasser TC, Vlachovský R, Kubíček L, Lambert L, Man V, et al.. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020;71(2):617–626.e6. doi: 10.1016/j.jvs.2019.03.051 PubMed DOI

Khosla S, Morris DR, Moxon JV., Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. British Journal of Surgery. 2014;101(11):1350–7. doi: 10.1002/bjs.9578 PubMed DOI

Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: Demonstrative application. Ann N Y Acad Sci. 2006;1085:11–21. doi: 10.1196/annals.1383.046 PubMed DOI

Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. European Journal of Vascular and Endovascular Surgery [Internet]. 2010;40(2):176–85. Available from: 10.1016/j.ejvs.2010.04.003 PubMed DOI

Polzer S, Gasser TC. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J R Soc Interface. 2015;12(113). doi: 10.1098/rsif.2015.0852 PubMed DOI PMC

Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall WA, et al.. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol. 2013;12(4):717–33. doi: 10.1007/s10237-012-0436-1 PubMed DOI

Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH. Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg. 2011. Apr 1;53(4):950–7. doi: 10.1016/j.jvs.2010.10.073 PubMed DOI

Tong J, Schriefl AJ, Cohnert T, Holzapfel GA. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery. 2013;45(4):364–72. doi: 10.1016/j.ejvs.2013.01.003 PubMed DOI

Villard C, Eriksson P, Hanemaaijer R, Lindeman JH, Hultgren R. The composition of collagen in the aneurysm wall of men and women. J Vasc Surg. 2017. Aug 1;66(2):579–585.e1. doi: 10.1016/j.jvs.2016.02.056 PubMed DOI

Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B. Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol [Internet]. 2001. [cited 2020 Sep 4];25(4):133–42. Available from: https://www.tandfonline.com/doi/abs/10.1080/03091900110057806 PubMed DOI

Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al.. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38(6):1283–92. doi: 10.1016/s0741-5214(03)00791-2 PubMed DOI

Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg. 2006;43(3):570–6. doi: 10.1016/j.jvs.2005.10.072 PubMed DOI

Raghavan ML, Hanaoka MM, Kratzberg JA, Higuchi M de L, da Silva ES. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech. 2011;44(13):2501–7. doi: 10.1016/j.jbiomech.2011.06.004 PubMed DOI

Tavares Monteiro JA, Da Silva ES, Raghavan ML, Puech-Leão P, De Lourdes Higuchi M, Otoch JP. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg. 2014;59(5). doi: 10.1016/j.jvs.2013.04.064 PubMed DOI

O’Leary SA, Doyle BJ, McGloughlin TM. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J Biomech [Internet]. 2013. Jul 26 [cited 2019 Mar 18];46(11):1955–60. Available from: https://www.sciencedirect.com/science/article/pii/S0021929013002248 PubMed

Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech. 2006;39(16):3010–6. doi: 10.1016/j.jbiomech.2005.10.021 PubMed DOI

Bruder L, Pelisek J, Eckstein HH, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: A patient-specific, probabilistic framework and comparative case-control study. PLoS One [Internet]. 2020. Nov 1 [cited 2021 Jan 7];15(11 November):e0242097. Available from: 10.1371/journal.pone.0242097 PubMed DOI PMC

Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg. 2010;51(3):679–88. doi: 10.1016/j.jvs.2009.10.048 PubMed DOI

Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta. Ann Biomed Eng. 2015;43(8):1759–71. doi: 10.1007/s10439-014-1222-2 PubMed DOI

Polzer S, Man V, Vlachovský R, Kubíček L, Kracík J, Staffa R, et al.. Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J Mech Behav Biomed Mater. 2020. Oct 28;104181. doi: 10.1016/j.jmbbm.2020.104181 PubMed DOI

Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. Three-dimensional geometrical characterization of abdominal aortic aneurysms: Image-based wall thickness distribution. J Biomech Eng. 2009;131(6):1–11. doi: 10.1115/1.3127256 PubMed DOI

Humphrey JD, Na S. Elastodynamics and arterial wall stress. Ann Biomed Eng. 2002;30(4):509–23. doi: 10.1114/1.1467676 PubMed DOI

Biehler J, Kehl S, Gee MW, Schmies F, Pelisek J, Maier A, et al.. Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression. Biomech Model Mechanobiol. 2017;16(1):45–61. doi: 10.1007/s10237-016-0801-6 PubMed DOI

Biehler J, Wall WA. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms. Int J Numer Method Biomed Eng [Internet]. 2018. Feb 1 [cited 2020 Sep 4];34(2):e2922. Available from: http://doi.wiley.com/10.1002/cnm.2922 PubMed DOI

Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61(1–3):1–48.

Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39(7):1324–34. doi: 10.1016/j.jbiomech.2005.03.003 PubMed DOI

Hoffman MD, Andrew G. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. 2014;15:1593–623.

Koller D, Friedman N. Probabilistic graphical models: principles and techniques [Internet]. 2009 [cited 2023 Apr 18]. https://books.google.com/books?hl=en&lr=&id=7dzpHCHzNQ4C&oi=fnd&pg=PR9&dq=KOLLER,+Daphne%3B+FRIEDMAN,+Nir.%C2%A0Probabilistic+graphical+models:+principles+and+techniques.+MIT+press,+2009.&ots=px6AGh-UxR&sig=sQLBB1Bbt8ygTgT8A6pa-8SNd0Y

Robert Christian P. The Bayesian Choice. The Bayesian Choice. Springer; New York; 2007.

Salvatier J, Wiecki TV., Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Comput Sci. 2016;2016(4):1–24.

Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences on JSTOR. Statistical Science. 1992;7(4):457–511.

Raghavan ML, Ma B, Fillinger MF. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng. 2006;34(9):1414–9. doi: 10.1007/s10439-006-9115-7 PubMed DOI

Tong J, Cohnert T, Regitnig P, Holzapfel GA. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: Biaxial extension behaviour and material modelling. European Journal of Vascular and Endovascular Surgery. 2011;42(2):207–19. doi: 10.1016/j.ejvs.2011.02.017 PubMed DOI

O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue. Ann Biomed Eng. 2014. Nov 21;42(12):2440–50. doi: 10.1007/s10439-014-1106-5 PubMed DOI

Ferruzzi J, Vorp DA, Humphrey JD. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface. 2011;8(56):435–50. doi: 10.1098/rsif.2010.0299 PubMed DOI PMC

Chuong, C J; Fung YC. COMPRESSIBILITY AND CONSTITUTIVE EQUATION OF ARTERIAL WALL IN RADIAL COMPRESSION EXPERIMENTS. 1984;35–40. PubMed

Maier A. Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms [Internet]. Verlag Dr.Hut; 2012. [cited 2020 Oct 5]. 197 p. https://www.dr.hut-verlag.de/978-3-8439-1066-8.html

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...