Contact pressure explains half of the abdominal aortic aneurysms wall thickness inter-study variability
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39621730
PubMed Central
PMC11611137
DOI
10.1371/journal.pone.0314368
PII: PONE-D-24-02030
Knihovny.cz E-zdroje
- MeSH
- aneurysma břišní aorty * patologie patofyziologie diagnostické zobrazování MeSH
- aorta abdominalis patofyziologie diagnostické zobrazování patologie MeSH
- Bayesova věta * MeSH
- lidé MeSH
- ruptura aorty patofyziologie patologie diagnostické zobrazování MeSH
- senioři MeSH
- stochastické procesy MeSH
- tlak MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The stochastic rupture risk assessment of an abdominal aortic aneurysm (AAA) critically depends on sufficient data set size that would allow for the proper distribution estimate. However, in most published cases, the data sets comprise no more than 100 samples, which is deemed insufficient to describe the tails of AAA wall thickness distribution correctly. In this study, we propose a stochastic Bayesian model to merge thickness data from various groups. The thickness data adapted from the literature were supplemented by additional data from 81 patients. The wall thickness was measured at two different contact pressures for 34 cases, which allowed us to estimate the radial stiffness. Herein, the proposed stochastic model is formulated to predict the undeformed wall thickness. Furthermore, the model is able to handle data published solely as summary statistics. After accounting for the different contact pressures, the differences in the medians reported by individual groups decreased by 45%. Combined data can be fitted with a lognormal distribution with parameters μ = 0.85 and σ = 0.32 which can be further used in stochastic analyses.
Department of Applied Mathematics VSB Technical University of Ostrava Ostrava Czech Republic
Department of Applied Mechanics VSB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Hoornweg LL, Storm-Versloot MN, Ubbink DT, Koelemay MJW, Legemate DA, Balm R. Meta Analysis on Mortality of Ruptured Abdominal Aortic Aneurysms. European Journal of Vascular and Endovascular Surgery. 2008;35(5):558–70. doi: 10.1016/j.ejvs.2007.11.019 PubMed DOI
Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T, et al.. Editor’s Choice–European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery [Internet]. 2019;57(1):8–93. Available from: doi: 10.1016/j.ejvs.2018.09.020 PubMed DOI
Lederle F a, Johnson GR, Wilson SE Ballard DJ, Jordan WD, Blebea J, et al.. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA : the journal of the American Medical Association. 2002;287(22):2968–72. PubMed
Polzer S, Gasser TC, Vlachovský R, Kubíček L, Lambert L, Man V, et al.. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020;71(2):617–626.e6. doi: 10.1016/j.jvs.2019.03.051 PubMed DOI
Khosla S, Morris DR, Moxon JV., Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. British Journal of Surgery. 2014;101(11):1350–7. doi: 10.1002/bjs.9578 PubMed DOI
Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: Demonstrative application. Ann N Y Acad Sci. 2006;1085:11–21. doi: 10.1196/annals.1383.046 PubMed DOI
Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. European Journal of Vascular and Endovascular Surgery [Internet]. 2010;40(2):176–85. Available from: 10.1016/j.ejvs.2010.04.003 PubMed DOI
Polzer S, Gasser TC. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J R Soc Interface. 2015;12(113). doi: 10.1098/rsif.2015.0852 PubMed DOI PMC
Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall WA, et al.. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol. 2013;12(4):717–33. doi: 10.1007/s10237-012-0436-1 PubMed DOI
Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH. Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg. 2011. Apr 1;53(4):950–7. doi: 10.1016/j.jvs.2010.10.073 PubMed DOI
Tong J, Schriefl AJ, Cohnert T, Holzapfel GA. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery. 2013;45(4):364–72. doi: 10.1016/j.ejvs.2013.01.003 PubMed DOI
Villard C, Eriksson P, Hanemaaijer R, Lindeman JH, Hultgren R. The composition of collagen in the aneurysm wall of men and women. J Vasc Surg. 2017. Aug 1;66(2):579–585.e1. doi: 10.1016/j.jvs.2016.02.056 PubMed DOI
Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B. Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol [Internet]. 2001. [cited 2020 Sep 4];25(4):133–42. Available from: https://www.tandfonline.com/doi/abs/10.1080/03091900110057806 PubMed DOI
Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al.. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38(6):1283–92. doi: 10.1016/s0741-5214(03)00791-2 PubMed DOI
Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg. 2006;43(3):570–6. doi: 10.1016/j.jvs.2005.10.072 PubMed DOI
Raghavan ML, Hanaoka MM, Kratzberg JA, Higuchi M de L, da Silva ES. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech. 2011;44(13):2501–7. doi: 10.1016/j.jbiomech.2011.06.004 PubMed DOI
Tavares Monteiro JA, Da Silva ES, Raghavan ML, Puech-Leão P, De Lourdes Higuchi M, Otoch JP. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg. 2014;59(5). doi: 10.1016/j.jvs.2013.04.064 PubMed DOI
O’Leary SA, Doyle BJ, McGloughlin TM. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J Biomech [Internet]. 2013. Jul 26 [cited 2019 Mar 18];46(11):1955–60. Available from: https://www.sciencedirect.com/science/article/pii/S0021929013002248 PubMed
Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech. 2006;39(16):3010–6. doi: 10.1016/j.jbiomech.2005.10.021 PubMed DOI
Bruder L, Pelisek J, Eckstein HH, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: A patient-specific, probabilistic framework and comparative case-control study. PLoS One [Internet]. 2020. Nov 1 [cited 2021 Jan 7];15(11 November):e0242097. Available from: 10.1371/journal.pone.0242097 PubMed DOI PMC
Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg. 2010;51(3):679–88. doi: 10.1016/j.jvs.2009.10.048 PubMed DOI
Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta. Ann Biomed Eng. 2015;43(8):1759–71. doi: 10.1007/s10439-014-1222-2 PubMed DOI
Polzer S, Man V, Vlachovský R, Kubíček L, Kracík J, Staffa R, et al.. Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J Mech Behav Biomed Mater. 2020. Oct 28;104181. doi: 10.1016/j.jmbbm.2020.104181 PubMed DOI
Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. Three-dimensional geometrical characterization of abdominal aortic aneurysms: Image-based wall thickness distribution. J Biomech Eng. 2009;131(6):1–11. doi: 10.1115/1.3127256 PubMed DOI
Humphrey JD, Na S. Elastodynamics and arterial wall stress. Ann Biomed Eng. 2002;30(4):509–23. doi: 10.1114/1.1467676 PubMed DOI
Biehler J, Kehl S, Gee MW, Schmies F, Pelisek J, Maier A, et al.. Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression. Biomech Model Mechanobiol. 2017;16(1):45–61. doi: 10.1007/s10237-016-0801-6 PubMed DOI
Biehler J, Wall WA. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms. Int J Numer Method Biomed Eng [Internet]. 2018. Feb 1 [cited 2020 Sep 4];34(2):e2922. Available from: http://doi.wiley.com/10.1002/cnm.2922 PubMed DOI
Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61(1–3):1–48.
Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39(7):1324–34. doi: 10.1016/j.jbiomech.2005.03.003 PubMed DOI
Hoffman MD, Andrew G. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. 2014;15:1593–623.
Koller D, Friedman N. Probabilistic graphical models: principles and techniques [Internet]. 2009 [cited 2023 Apr 18]. https://books.google.com/books?hl=en&lr=&id=7dzpHCHzNQ4C&oi=fnd&pg=PR9&dq=KOLLER,+Daphne%3B+FRIEDMAN,+Nir.%C2%A0Probabilistic+graphical+models:+principles+and+techniques.+MIT+press,+2009.&ots=px6AGh-UxR&sig=sQLBB1Bbt8ygTgT8A6pa-8SNd0Y
Robert Christian P. The Bayesian Choice. The Bayesian Choice. Springer; New York; 2007.
Salvatier J, Wiecki TV., Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Comput Sci. 2016;2016(4):1–24.
Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences on JSTOR. Statistical Science. 1992;7(4):457–511.
Raghavan ML, Ma B, Fillinger MF. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng. 2006;34(9):1414–9. doi: 10.1007/s10439-006-9115-7 PubMed DOI
Tong J, Cohnert T, Regitnig P, Holzapfel GA. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: Biaxial extension behaviour and material modelling. European Journal of Vascular and Endovascular Surgery. 2011;42(2):207–19. doi: 10.1016/j.ejvs.2011.02.017 PubMed DOI
O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue. Ann Biomed Eng. 2014. Nov 21;42(12):2440–50. doi: 10.1007/s10439-014-1106-5 PubMed DOI
Ferruzzi J, Vorp DA, Humphrey JD. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface. 2011;8(56):435–50. doi: 10.1098/rsif.2010.0299 PubMed DOI PMC
Chuong, C J; Fung YC. COMPRESSIBILITY AND CONSTITUTIVE EQUATION OF ARTERIAL WALL IN RADIAL COMPRESSION EXPERIMENTS. 1984;35–40. PubMed
Maier A. Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms [Internet]. Verlag Dr.Hut; 2012. [cited 2020 Oct 5]. 197 p. https://www.dr.hut-verlag.de/978-3-8439-1066-8.html