Two classes of functional connectivity in dynamical processes in networks

. 2021 Oct ; 18 (183) : 20210486. [epub] 20211020

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34665977

The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines-from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity-one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes-excitations, regular and chaotic oscillators-and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.

Zobrazit více v PubMed

Mukherjee S, Speed TP. 2008. Network inference using informative priors. Proc. Natl Acad. Sci. USA 105, 14 313-14 318. (10.1073/pnas.0802272105) PubMed DOI PMC

Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. 2010. Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA 107, 6286-6291. (10.1073/pnas.0913357107) PubMed DOI PMC

Marbach D et al. 2012. Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796-804. (10.1038/nmeth.2016) PubMed DOI PMC

Zhao J, Zhou Y, Zhang X, Chen L. 2016. Part mutual information for quantifying direct associations in networks. Proc. Natl Acad. Sci. USA 113, 5130-5135. (10.1073/pnas.1522586113) PubMed DOI PMC

Newman MEJ. 2018. Network structure from rich but noisy data. Nat. Phys. 14, 542-545. (10.1038/s41567-018-0076-1) DOI

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran J-P, Meuli R, Hagmann P. 2009. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035-2040. (10.1073/pnas.0811168106) PubMed DOI PMC

Sonnenschein N, Dzib JFG, Lesne A, Eilebrecht S, Boulkroun S, Zennaro M-C, Benecke A, Hütt M-T. 2012. A network perspective on metabolic inconsistency. BMC Syst. Biol. 6, 41. (10.1186/1752-0509-6-41) PubMed DOI PMC

Ideker T, Krogan NJ. 2012. Differential network biology. Mol. Syst. Biol. 8, 565. (10.1038/msb.2011.99) PubMed DOI PMC

Dong Y, Zha Q, Zhang H, Kou G, Fujita H, Chiclana F, Herrera-Viedma E. 2018. Consensus reaching in social network group decision making: research paradigms and challenges. Knowledge-Based Syst. 162, 3-13. (10.1016/j.knosys.2018.06.036) DOI

Jalili M. 2013. Social power and opinion formation in complex networks. Physica A 392, 959-966. (10.1016/j.physa.2012.10.013) DOI

Potts R, Vella K, Dale A, Sipe N. 2016. Exploring the usefulness of structural–functional approaches to analyse governance of planning systems. Planning Theory 15, 162-189. (10.1177/1473095214553519) DOI

Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thornton SF, Brazier RE. 2011. Linking environmental regimes, space and time: interpretations of structural and functional connectivity. Geomorphology 126, 387-404. (10.1016/j.geomorph.2010.07.027) DOI

Baartman JEM et al. 2020. What do models tell us about water and sediment connectivity? Geomorphology 367, 107300. (10.1016/j.geomorph.2020.107300) DOI

Wohl E et al. 2019. Connectivity as an emergent property of geomorphic systems. Earth Surf. Processes Landforms 44, 4-26. (10.1002/esp.4434) DOI

Boguna M, Krioukov D, Claffy KC. 2009. Navigability of complex networks. Nat. Phys. 5, 74-80. (10.1038/nphys1130) DOI

Meyer M, Hütt M-T, Bendul JC. 2015. The elementary flux modes of a manufacturing system: a novel approach to explore the relationship of network structure and function. Int. J. Prod. Res. 54, 16. (10.1080/00207543.2015.1106612) DOI

Li Y, Tao F, Cheng Y, Zhang X, Nee AYC. 2017. Complex networks in advanced manufacturing systems. J. Manuf. Syst. 43, 409-421. (10.1016/j.jmsy.2016.12.001) DOI

Zhang J, Zhang Y, Wang L, Sang L, Yang J, Yan R, Li P, Wang J, Qiu M. 2017. Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience 364, 212-225. (10.1016/j.neuroscience.2017.09.009) PubMed DOI

Müller-Linow M, Hilgetag CC, Hütt M-T. 2008. Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4, e1000190. (10.1371/journal.pcbi.1000190) PubMed DOI PMC

Moretti P, Hütt M-T. 2020. Link-usage asymmetry and collective patterns emerging from rich-club organization of complex networks. Proc. Natl Acad. Sci. USA 117, 183̇32-183̇40. (10.1073/pnas.1919785117) PubMed DOI PMC

Turnbull L et al. 2018. Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl. Netw. Sci. 3, 1-49. (10.1007/s41109-018-0067-2) PubMed DOI PMC

Arenas A, Diaz-Guilera A, Pérez-Vicente CJ. 2006. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102. (10.1103/PhysRevLett.96.114102) PubMed DOI

Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C. 2008. Synchronization in complex networks. Phys. Rep. 469, 93-153. (10.1016/j.physrep.2008.09.002) DOI

Rodrigues FA, Peron TK D.M., Ji P, Kurths J. 2016. The Kuramoto model in complex networks. Phys. Rep. 610, 1-98. (10.1016/j.physrep.2015.10.008) DOI

Chen M, Shang Y, Zhou C, Wu Y, Kurths J. 2009. Enhanced synchronizability in scale-free networks. Chaos 19, 013105. (10.1063/1.3062864) PubMed DOI

Messé A, Hütt M-T, König P, Hilgetag CC. 2015. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Sci. Rep. 5, 1-5. (10.1038/srep07870) PubMed DOI PMC

Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101. (10.1103/PhysRevLett.110.178101) PubMed DOI

Garcia GC, Lesne A, Hütt M-T, Hilgetag CC. 2012. Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front. Comput. Neurosci. 6, 50. (10.3389/fncom.2012.00050) PubMed DOI PMC

Fretter C, Lesne A, Hilgetag CC, Hütt M-T. 2017. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs. Sci. Rep. 7, 42340. (10.1038/srep42340) PubMed DOI PMC

Messé A, Hütt M-T, Hilgetag CC. 2018. Toward a theory of coactivation patterns in excitable neural networks. PLoS Comput. Biol. 14, e1006084. (10.1371/journal.pcbi.1006084) PubMed DOI PMC

Garcia GC, Lesne A, Hilgetag CC, Hütt M-T. 2014. Role of long cycles in excitable dynamics on graphs. Phys. Rev. E 90, 52805. (10.1103/PhysRevE.90.052805) PubMed DOI

Markov NT et al. 2014. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17-36. (10.1093/cercor/bhs270) PubMed DOI PMC

Palsson B. 2015. Systems biology. Cambridge, UK: Cambridge University Press.

Cross RL, Cross RL, Parker A. 2004. The hidden power of social networks: understanding how work really gets done in organizations. Boston, MA: Harvard Business Review Press.

Wu Z, Guo A. 1999. Selective visual attention in a neurocomputational model of phase oscillators. Biol. Cybern. 80, 205-214. (10.1007/s004220050518) PubMed DOI

Corchs S, Deco G. 2001. A neurodynamical model for selective visual attention using oscillators. Neural Netw. 14, 981-990. (10.1016/S0893-6080(01)00055-7) PubMed DOI

Messé A, Rudrauf D, Benali H, Marrelec G. 2014. Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput. Biol. 10, e1003530. (10.1371/journal.pcbi.1003530) PubMed DOI PMC

Babloyantz A, Lourenço C. 1994. Computation with chaos: a paradigm for cortical activity. Proc. Natl Acad. Sci. USA 91, 9027-9031. (10.1073/pnas.91.19.9027) PubMed DOI PMC

Xu K, Maidana JP, Castro S, Orio P. 2018. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Sci. Rep. 8, 1-12. (10.1038/s41598-018-26730-9) PubMed DOI PMC

Becker T, Beber ME, Windt K, Hütt M-T, Helbing D. 2011. Flow control by periodic devices: a unifying language for the description of traffic, production, and metabolic systems. J. Stat. Mech: Theory Exp. 2011, P05004. (10.1088/1742-5468/2011/05/P05004) DOI

Camacho D, De La Fuente A, Mendes P. 2005. The origin of correlations in metabolomics data. Metabolomics 1, 53-63. (10.1007/s11306-005-1107-3) DOI

Müller-Linow M, Weckwerth W, Hütt M-T. 2007. Consistency analysis of metabolic correlation networks. BMC Syst. Biol. 1, 1-12. (10.1186/1752-0509-1-1) PubMed DOI PMC

Kumar S, D’Souza RN, Corno M, Ullrich MS, Kuhnert N, Hütt M-T. 2020. Correlation network analysis based on untargeted LC-MS profiles of cocoa reveals processing stage and origin country. bioRxiv. (10.1101/2020.02.09.940585) DOI

Moreno Y, Nekovee M, Pacheco AF. 2004. Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, 066130. (10.1103/PhysRevE.69.066130) PubMed DOI

Helbing D. 2012. Social self-organization: agent-based simulations and experiments to study emergent social behavior. New York, NY: Springer.

Nowak AK, Vallacher RR, Praszkier R, Rychwalska A, Zochowski M. 2020. Synchronization in groups and societies. In In sync: the emergence of function in minds, groups and societies (understanding complex systems), pp. 113–136. New York, NY: Springer.

Dooley KJ, Van de Ven AH. 1999. Explaining complex organizational dynamics. Organ. Sci. 10, 358-372. (10.1287/orsc.10.3.358) DOI

Whitby S, Parker D, Tobias A. 2001. Non-linear dynamics and duopolistic competition: a R&D model and simulation. J. Bus. Res. 51, 179-191. (10.1016/S0148-2963(99)00050-8) DOI

Yuan X, Nishant R. 2019. Understanding the complex relationship between R&D investment and firm growth: a chaos perspective. J. Bus. Res. 129, 666-678. (10.1016/j.jbusres.2019.11.043) DOI

Damicelli F, Hilgetag CC, Hütt M-T, Messé A. 2019. Topological reinforcement as a principle of modularity emergence in brain networks. Netw. Neurosci. 3, 589-605. (10.1162/netn_a_00085) PubMed DOI PMC

Lind PG, Gallas JAC, Herrmann HJ. 2004. Coherence in scale-free networks of chaotic maps. Phys. Rev. E 70, 056207. (10.1103/PhysRevE.70.056207) PubMed DOI

Masoller C, Atay FM. 2011. Complex transitions to synchronization in delay-coupled networks of logistic maps. Eur. Phys. J. D 62, 119-126. (10.1140/epjd/e2011-10370-7) DOI

Hütt M-T, Jain MK, Hilgetag CC, Lesne A. 2012. Stochastic resonance in discrete excitable dynamics on graphs. Chaos, Solitons & Fractals 45, 611-618. (10.1016/j.chaos.2011.12.011) DOI

Prell C. 2012. Social network analysis: history, theory and methodology. Los Angeles, CA: Sage.

Klamt S, Haus U-U, Theis F. 2009. Hypergraphs and cellular networks. PLoS Comput. Biol. 5, e1000385. (10.1371/journal.pcbi.1000385) PubMed DOI PMC

Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J-G, Petri G. 2020. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1-92. (10.1016/j.physrep.2020.05.004) DOI

Gorochowski TE, Bernardo MD, Grierson CS. 2012. Evolving dynamical networks: a formalism for describing complex systems. Complexity 17, 18-25. (10.1002/cplx.20386) DOI

Maslennikov OV, Nekorkin VI. 2017. Adaptive dynamical networks. Phys. Usp. 60, 694. (10.3367/UFNe.2016.10.037902) DOI

Battaglia D et al. 2020. Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan. NeuroImage 222, 117156. (10.1016/j.neuroimage.2020.117156) PubMed DOI

Nunes JP, Wainwright J, Bielders CL, Darboux F, Fiener P, Finger D, Turnbull L. 2018. Better models are more effectively connected models. Earth Surf. Processes Landforms 43, 1355-1360. (10.1002/esp.4323) DOI

Erős T, Olden JD, Schick RS, Schmera D, Fortin M. 2012. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 27, 303-317. (10.1007/s10980-011-9659-2) DOI

Schick RS, Lindley ST. 2007. Directed connectivity among fish populations in a riverine network. J. Appl. Ecol. 44, 1116-1126. (10.1111/j.1365-2664.2007.01383.x) DOI

Marra WA, Kleinhans MG, Addink EA. 2014. Network concepts to describe channel importance and change in multichannel systems: test results for the Jamuna river, Bangladesh. Earth Surf. Processes Landforms 39, 766-778. (10.1002/esp.3482) DOI

Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E. 2015. Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resour. Res. 51, 3998-4018. (10.1002/2014WR016577) DOI

Passalacqua P. 2017. The delta connectome: a network-based framework for studying connectivity in river deltas. Geomorphology 277, 50-62. (10.1016/j.geomorph.2016.04.001) DOI

Pearson SG, van Prooijen BC, Elias EPL, Vitousek S, Wang ZB. 2020. Sediment connectivity: a framework for analyzing coastal sediment transport pathways. J. Geophys. Res.: Earth Surface 125, e2020JF005595. (10.1029/2020JF005595) DOI

Trigg MA, Michaelides K, Neal JC, Bates PD. 2013. Surface water connectivity dynamics of a large scale extreme flood. J. Hydrol. 505, 138-149. (10.1016/j.jhydrol.2013.09.035) DOI

Abed-Elmdoust A, Singh A, Yang Z-L. 2017. Emergent spectral properties of river network topology: an optimal channel network approach. Sci. Rep. 7, 1-9. (10.1038/s41598-017-11579-1) PubMed DOI PMC

Rigon R, Rinaldo A, Rodriguez-Iturbe I, Bras RL, Ijjasz-Vasquez E. 1993. Optimal channel networks: a framework for the study of river basin morphology. Water Resour. Res. 29, 1635-1646. (10.1029/92WR02985) DOI

Balister P, Balogh J, Bertuzzo E, Bollobás B, Caldarelli G, Maritan A, Mastrandrea R, Morris R, Rinaldo A. 2018. River landscapes and optimal channel networks. Proc. Natl Acad. Sci. USA 115, 6548-6553. (10.1073/pnas.1804484115) PubMed DOI PMC

Jencso KG, McGlynn BL, Gooseff MN, Wondzell SM, Bencala KE, Marshall LA. 2009. Hydrologic connectivity between landscapes and streams: transferring reach- and plot-scale understanding to the catchment scale. Water Resour. Res. 45, W04428. (10.1029/2008WR007225) DOI

Turnbull L, Wainwright J. 2019. From structure to function: understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecol. Indic. 98, 608-618. (10.1016/j.ecolind.2018.11.039) DOI

Rinderer M, Ali G, Larsen LG. 2018. Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: state-of-the-art and research directions. Earth Sci. Rev. 178, 29-47. (10.1016/j.earscirev.2018.01.009) DOI

Turnbull L, Wainwright J, Brazier RE. 2010. Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol. Process.: An Int. J. 24, 393-414. (10.1002/hyp.7491) DOI

Phillips RW, Spence C, Pomeroy JW. 2011. Connectivity and runoff dynamics in heterogeneous basins. Hydrol. Processes 25, 3061-3075. (10.1002/hyp.8123) DOI

Zuecco G, Rinderer M, Penna D, Borga M, van Meerveld HJ. 2019. Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory. Sci. Total Environ. 646, 1265-1280. (10.1016/j.scitotenv.2018.07.269) PubMed DOI

Keefer TO, Moran MS, Paige GB. 2008. Long-term meteorological and soil hydrology database, walnut gulch experimental watershed, Arizona, United States. Water Resour. Res. 44, W05S07. (10.1029/2006WR005702) DOI

Zaliapin I, Foufoula-Georgiou E, Ghil M. 2010. Transport on river networks: a dynamic tree approach. J. Geophys. Res.: Earth Surface 115, F00A15. (10.1029/2009JF001281) DOI

Czuba JA, Foufoula-Georgiou E. 2014. A network-based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resour. Res. 50, 3826-3851. (10.1002/2013WR014227) DOI

Sánchez-Andrés R, Sánchez-Carrillo S, Ortiz-Llorente MJ, Álvarez-Cobelas M, Cirujano S. 2010. Do changes in flood pulse duration disturb soil carbon dioxide emissions in semi-arid floodplains? Biogeochemistry 101, 257-267. (10.1007/s10533-010-9472-z) DOI

Ashauer R, Boxall ABA, Brown CD. 2007. Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex. Environ. Sci. Technol. 41, 5535-5541. (10.1021/es070283w) PubMed DOI

Parsons AJ, Wainwright J, Abrahams AD, Simanton JR. 1997. Distributed dynamic modelling of interrill overland flow. Hydrol. Processes 11, 1833-1859. (10.1002/(SICI)1099-1085(199711)11:14<1833::AID-HYP499>3.0.CO;2-7) DOI

Mueller EN, Wainwright J, Parsons AJ. 2007. Impact of connectivity on the modeling of overland flow within semiarid shrubland environments. Water Resour. Res. 43, W09412. (10.1029/2006WR005006) DOI

Korup O. 2005. Large landslides and their effect on sediment flux in south westland, New Zealand. Earth Surface Process. Landforms: The J. British Geomorphol. Res. Group 30, 305-323. (10.1002/esp.1143) DOI

Croissant T, Steer P, Lague D, Davy P, Jeandet L, Hilton RG. 2019. Seismic cycles, earthquakes, landslides and sediment fluxes: linking tectonics to surface processes using a reduced-complexity model. Geomorphology 339, 87-103. (10.1016/j.geomorph.2019.04.017) DOI

Tunnicliffe J, Brierley G, Fuller IC, Leenman A, Marden M, Peacock D. 2018. Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance. Geomorphology 307, 50-64. (10.1016/j.geomorph.2017.11.006) DOI

Betterle A, Schirmer M, Botter G. 2017. Characterizing the spatial correlation of daily streamflows. Water Resour. Res. 53, 1646-1663. (10.1002/2016WR019195) DOI

Croke J, Fryirs K, Thompson C. 2013. Channel–floodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surf. Processes Landforms 38, 1444-1456. (10.1002/esp.3430) DOI

Borrett SR, Scharler UM. 2019. Walk partitions of flow in ecological network analysis: review and synthesis of methods and indicators. Ecol. Indic. 106, 105451. (10.1016/j.ecolind.2019.105451) DOI

Siqueira T, Durães LD, de Oliveira Roque F. 2014. Predictive modelling of insect metacommunities in biomonitoring of aquatic networks. In Ecological modelling applied to entomology (eds C Ferreira, W Godoy), pp. 109–126. New York, NY: Springer. (10.1007/978-3-319-06877-0_5) DOI

Bodin Ö, Saura S. 2010. Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol. Modell 221, 2393-2405. (10.1016/j.ecolmodel.2010.06.017) DOI

Erős T, Olden JD, Schick RS, Schmera D, Fortin M-J. 2012. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 27, 303-317. (10.1007/s10980-011-9659-2) DOI

Erős T, Lowe WH. 2019. The landscape ecology of rivers: from patch-based to spatial network analyses. Curr. Landsc. Ecol. Rep. 4, 103-112. (10.1007/s40823-019-00044-6) DOI

Minor ES, Urban DL. 2008. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297-307. (10.1111/j.1523-1739.2007.00871.x) PubMed DOI

Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG. 2001. Plant–soil–microbial interactions in a northern hardwood forest. Ecology 82, 965-978. (10.1890/0012-9658(2001)082[0965:PSMIIA]2.0.CO;2) DOI

Baldan D, Piniewski M, Funk A, Gumpinger C, Flödl P, Höfer S, Hauer C, Hein T. 2020. A multi-scale, integrative modeling framework for setting conservation priorities at the catchment scale for the freshwater pearl mussel Margaritifera margaritifera. Sci. Total Environ. 718, 137369. (10.1016/j.scitotenv.2020.137369) PubMed DOI

Heino J et al. 2017. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 25, 334-349. (10.1139/er-2016-0110) DOI

Saura S, Rubio L. 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523-537. (10.1111/j.1600-0587.2009.05760.x) DOI

Schick RS et al. 2008. Understanding movement data and movement processes: current and emerging directions. Ecol. Lett. 11, 1338-1350. (10.1111/j.1461-0248.2008.01249.x) PubMed DOI

Tonkin JD, Altermatt F, Finn DS, Heino J, Olden JD, Pauls SU, Lytle DA. 2018. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshwater Biol. 63, 141-163. (10.1111/fwb.13037) DOI

Calabrese JM, Fagan WF. 2004. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529-536. (10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2) DOI

Neufeld K, Watkinson DA, Tierney K, Poesch MS. 2018. Incorporating asymmetric movement costs into measures of habitat connectivity to assess impacts of hydrologic alteration to stream fishes. Divers. Distributions 24, 593-604. (10.1111/ddi.12713) DOI

Larsen S et al. 2021. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791-801. (10.1111/ele.13699) PubMed DOI PMC

Muneepeerakul R, Weitz JS, Levin SA, Rinaldo A, Rodriguez-Iturbe I. 2007. A neutral metapopulation model of biodiversity in river networks. J. Theor. Biol. 245, 351-363. (10.1016/j.jtbi.2006.10.005) PubMed DOI

Gilarranz LJ, Hastings A, Bascompte J. 2015. Inferring topology from dynamics in spatial networks. Theor. Ecol. 8, 15-21. (10.1007/s12080-014-0231-y) DOI

Terui T, Kobayashi S, Okubo Y, Murakami M, Hirose K, Kubo H. 2018. Efficacy and safety of guselkumab, an anti-interleukin 23 monoclonal antibody, for palmoplantar pustulosis: a randomized clinical trial. JAMA Dermatol. 154, 309-316. (10.1001/jamadermatol.2017.5937) PubMed DOI PMC

Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G. 2015. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149, 223-237. (10.1053/j.gastro.2015.05.008) PubMed DOI PMC

Holland MD, Hastings A. 2008. Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792-794. (10.1038/nature07395) PubMed DOI

Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018-1020. (10.1038/nature07950) PubMed DOI

Hajian-Forooshani Z, Vandermeer J. 2021. Viewing communities as coupled oscillators: elementary forms from Lotka and Volterra, Kuramoto. Theor. Ecol. 14, 1-8. (10.1007/s12080-020-00493-4) DOI

Lotka AJ. 1925. Elements of physical biology. Baltimore, MD: Williams & Wilkins.

Volterra V. 1926. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoire della R. Accademia Nazionale dei Lincei, anno CCCCXXIII, II. 1926. (Fluctuations in the abundance of a species considered mathematically). Nature 118, 558-560. (10.1038/118558a0) DOI

Brechtel A, Gramlich P, Ritterskamp D, Drossel B, Gross T. 2018. Master stability functions reveal diffusion-driven pattern formation in networks. Phys. Rev. E 97, 032307. (10.1103/PhysRevE.97.032307) PubMed DOI

Dame RF, Patten BC. 1981. Analysis of energy flows in an intertidal oyster reef. Mar. Ecol. Progress Ser. 5, 115-124. (10.3354/meps005115) DOI

Rudolf VHW, Lafferty KD. 2011. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75-79. (10.1111/j.1461-0248.2010.01558.x) PubMed DOI

Christian RR, Thomas CR. 2003. Network analysis of nitrogen inputs and cycling in the Neuse River estuary, North Carolina, USA. Estuaries 26, 815-828. (10.1007/BF02711992) DOI

Winfree AT. 1967. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15-42. (10.1016/0022-5193(67)90051-3) PubMed DOI

Kuramoto Y. 1975. Self-entrainment of a population of coupled non-linear oscillators. In Int. Symp. on Mathematical Problems in Theoretical Physics, 23–29 January 1975, Kyoto University, Kyoto, Japan (ed. H Araki), pp. 420–422. New York, NY: Springer.

Rinaldo A, Gatto M, Rodriguez-Iturbe I. 2018. River networks as ecological corridors: a coherent ecohydrological perspective. Adv. Water Res. 112, 27-58. (10.1016/j.advwatres.2017.10.005) PubMed DOI PMC

Chaput-Bardy A, Alcala N, Secondi J, Vuilleumier S. 2017. Network analysis for species management in rivers networks: application to the Loire river. Biol. Conserv. 210, 26-36. (10.1016/j.biocon.2017.04.003) DOI

Hanski I, Ovaskainen O. 2003. Metapopulation theory for fragmented landscapes. Theor. Popul. Biol. 64, 119-127. (10.1016/S0040-5809(03)00022-4) PubMed DOI

Arumugam R, Lutscher F, Guichard F. 2021. Tracking unstable states: ecosystem dynamics in a changing world. Oikos 130, 525-540. (10.1111/oik.08051) DOI

Gilarranz LJ, Hastings A, Bascompte J. 2015. Inferring topology from dynamics in spatial networks. Theor. Ecol. 8, 15-21. (10.1007/s12080-014-0231-y) DOI

Luque S, Saura S, Fortin M-J. 2012. Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landsc. Ecol. 27, 153-157. (10.1007/s10980-011-9700-5) DOI

Moore JW et al. 2015. Emergent stability in a large, free-flowing watershed. Ecology 96, 340-347. (10.1890/14-0326.1) PubMed DOI

Terui A, Ishiyama N, Urabe H, Ono S, Finlay JC, Nakamura F. 2018. Metapopulation stability in branching river networks. Proc. Natl Acad. Sci. USA 115, E5963-E5969. (10.1073/pnas.1800060115) PubMed DOI PMC

Shen-Orr SS, Milo R, Mangan S, Alon U. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68. (10.1038/ng881) PubMed DOI

Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U. 2004. Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486-491. (10.1038/ng1348) PubMed DOI

Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. 2000. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369-391. (10.1091/mbc.11.1.369) PubMed DOI PMC

Li F, Long T, Lu Y, Ouyang Q, Tang C. 2004. The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA 101, 4781-4786. (10.1073/pnas.0305937101) PubMed DOI PMC

Davidich MI, Bornholdt S. 2008. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3, e1672. (10.1371/journal.pone.0001672) PubMed DOI PMC

Bornholdt S. 2005. Less is more in modeling large genetic networks. Science 310, 449-451. (10.1126/science.1119959) PubMed DOI

Le Novère N. 2015. Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16, 146-158. (10.1038/nrg3885) PubMed DOI PMC

Hütt M-T, Lesne A. 2020. Gene regulatory networks: dissecting structure and dynamics. In Systems medicine: integrative, qualitative and computational approaches (ed. Olaf Wolkenhauer), pp. 77–85. Amsterdam, The Netherlands: Elsevier.

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L. 2000. The large-scale organization of metabolic networks. Nature 407, 651-654. (10.1038/35036627) PubMed DOI

Beber ME, Fretter C, Jain S, Sonnenschein N, Müller-Hannemann M, Hütt MT. 2012. Artefacts in statistical analyses of network motifs: general framework and application to metabolic networks. J. R. Soc. Interface 9, 3426-3435. (10.1098/rsif.2012.0490) PubMed DOI PMC

Hütt M-T. 2014. Understanding genetic variation – the value of systems biology. Br. J. Clin. Pharmacol. 77, 597-605. (10.1111/bcp.12266) PubMed DOI PMC

Knecht C, Fretter C, Rosenstiel P, Krawczak M, Hütt M-T. 2016. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls. Sci. Rep. 6, 32584. (10.1038/srep32584) PubMed DOI PMC

Perrin-Cocon L et al. 2021. Lipogenesis and innate immunity in hepatocellular carcinoma cells reprogrammed by an isoenzyme switch of hexokinases. Commun. Biol. 1, 1-15. (10.1101/2020.03.13.973321) PubMed DOI PMC

Nyczka P, Hütt M-T, Lesne A. 2021. Inferring pattern generators on networks. Physica A 566, 125631. (10.1016/j.physa.2020.125631) DOI

Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis? Nat. Biotechnol. 28, 245-248. (10.1038/nbt.1614) PubMed DOI PMC

O’Brien Edward J, Monk Jonathan M, Palsson Bernhard O. 2015. Using genome-scale models to predict biological capabilities. Cell 161, 971-987. (10.1016/j.cell.2015.05.019) PubMed DOI PMC

Fell DA. 1992. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286, 313-330. (10.1042/bj2860313) PubMed DOI PMC

Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW-N. 2002. Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243-249. (10.1038/nbt0302-243) PubMed DOI

Oughtred R et al. 2019. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, 529-541. (10.1093/nar/gky1079) PubMed DOI PMC

Moreno-Zambrano M, Grimbs S, Ullrich MS, Hütt M-T. 2018. A mathematical model of cocoa bean fermentation. R. Soc. Open Sci. 5, 180964. (10.1098/rsos.180964) PubMed DOI PMC

Jones EG. 1999. Golgi, cajal and the neuron doctrine. J. Hist. Neurosci. 8, 170-178. (10.1076/jhin.8.2.170.1838) PubMed DOI

Sporns O, Tononi G, Kötter R. 2005. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42. (10.1371/journal.pcbi.0010042) PubMed DOI PMC

Sebastian Seung H. 2011. Towards functional connectomics. Nature 471, 171-172. (10.1038/471170a) PubMed DOI

Kötter R. 2004. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2, 127-144. (10.1385/NI:2:2:127) PubMed DOI

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. 2008. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159. (10.1371/journal.pbio.0060159) PubMed DOI PMC

Chiang A-S et al. 2011. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11. (10.1016/j.cub.2010.11.056) PubMed DOI

Van Essen DC et al. 2012. The human connectome project: a data acquisition perspective. NeuroImage 62, 2222-2231. (10.1016/j.neuroimage.2012.02.018) PubMed DOI PMC

Oh SW et al. 2014. A mesoscale connectome of the mouse brain. Nature 508, 207-214. (10.1038/nature13186) PubMed DOI PMC

Van den Heuvel MP, Bullmore ET, Sporns O. 2016. Comparative connectomics. Trends Cogn. Sci. 20, 345-361. (10.1016/j.tics.2016.03.001) PubMed DOI

Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168-174. (10.1038/nature12346) PubMed DOI

Markram H et al. 2015. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456-492. (10.1016/j.cell.2015.09.029) PubMed DOI

Eichler K et al. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175-182. (10.1038/nature23455) PubMed DOI PMC

Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. 2013. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184-197. (10.1016/j.neuron.2013.07.036) PubMed DOI PMC

Cherniak C. 1994. Component placement optimization in the brain. J. Neurosci. 14, 2418-2427. (10.1523/JNEUROSCI.14-04-02418.1994) PubMed DOI PMC

Chklovskii DB, Schikorski T, Stevens CF. 2002. Wiring optimization in cortical circuits. Neuron 34, 341-347. (10.1016/S0896-6273(02)00679-7) PubMed DOI

Sporns O, Kötter R. 2004. Motifs in brain networks. PLoS Biol. 2, e369. (10.1371/journal.pbio.0020369) PubMed DOI PMC

Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. 2005. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68. (10.1371/journal.pbio.0030068) PubMed DOI PMC

Perin R, Berger TK, Markram H. 2011. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci. USA 108, 5419-5424. (10.1073/pnas.1016051108) PubMed DOI PMC

Van Den Heuvel MP, Sporns O. 2011. Rich-club organization of the human connectome. J. Neurosci. 31, 15 775-15 786. (10.1523/JNEUROSCI.3539-11.2011) PubMed DOI PMC

Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassett DS. 2018. Cliques and cavities in the human connectome. J. Comput. Neurosci. 44, 115-145. (10.1007/s10827-017-0672-6) PubMed DOI PMC

Bassett DS, Sporns O. 2017. Network neuroscience. Nat. Neurosci. 20, 353-364. (10.1038/nn.4502) PubMed DOI PMC

Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51-62. (10.1038/nrn3136) PubMed DOI PMC

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. 2012. Canonical microcircuits for predictive coding. Neuron 76, 695-711. (10.1016/j.neuron.2012.10.038) PubMed DOI PMC

Fornito A, Zalesky A, Breakspear M. 2015. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159-172. (10.1038/nrn3901) PubMed DOI

Marr D, Poggio T. 1976. From understanding computation to understanding neural circuitry. Cambridge, MA: MIT.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700-711. (10.1038/nrn2201) PubMed DOI

Buzsaki G. 2006. Rhythms of the brain. Oxford, UK: Oxford University Press.

Wang X-J. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195-1268. (10.1152/physrev.00035.2008) PubMed DOI PMC

Varela F, Lachaux J-P, Rodriguez E, Martinerie J. 2001. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229-239. (10.1038/35067550) PubMed DOI

Brunel N, Wang X–J. 2003. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation–inhibition balance. J. Neurophysiol. 90, 415-430. (10.1152/jn.01095.2002) PubMed DOI

Fries P. 2015. Rhythms for cognition: communication through coherence. Neuron 88, 220-235. (10.1016/j.neuron.2015.09.034) PubMed DOI PMC

Roelfsema PR, Engel AK, König P, Singer W. 1997. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157-161. (10.1038/385157a0) PubMed DOI

Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560-1563. (10.1126/science.1055465) PubMed DOI

Canolty RT, Knight RT. 2010. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506-515. (10.1016/j.tics.2010.09.001) PubMed DOI PMC

Uhlhaas PJ, Singer W. 2012. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75, 963-980. (10.1016/j.neuron.2012.09.004) PubMed DOI

Friston KJ. 2011. Functional and effective connectivity: a review. Brain Connectivity 1, 13-36. (10.1089/brain.2011.0008) PubMed DOI

Liu L, Ioannides AA. 2006. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces. NeuroImage 31, 1726-1740. (10.1016/j.neuroimage.2006.02.009) PubMed DOI

Abeles M. 1991. Corticonics: neural circuits of the cerebral cortex. Cambridge, UK: Cambridge University Press.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. 2004. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559-564. (10.1126/science.1093173) PubMed DOI

Mitra A, Snyder AZ, Blazey T, Raichle ME. 2015. Lag threads organize the brain’s intrinsic activity. Proc. Natl Acad. Sci. USA 112, E2235-E2244. (10.1073/pnas.1503960112) PubMed DOI PMC

Battaglia D, Witt A, Wolf F, Geisel T. 2012. Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput. Biol. 8, e1002438. (10.1371/journal.pcbi.1002438) PubMed DOI PMC

Bastos AM, Vezoli J, Fries P. 2015. Communication through coherence with inter-areal delays. Curr. Opin Neurobiol. 31, 173-180. (10.1016/j.conb.2014.11.001) PubMed DOI

Carlos F-LP, Ubirakitan M-M, Rodrigues MCA, Aguilar-Domingo M, Herrera-Gutiérrez E, Gómez-Amor J, Copelli M, Carelli PV, Matias FS. 2020. Anticipated synchronization in human EEG data: unidirectional causality with negative phase lag. Phys. Rev. E 102, 032216. (10.1103/PhysRevE.102.032216) PubMed DOI

Deschle N, Daffertshofer A, Battaglia D, Martens EA. 2019. Directed flow of information in chimera states. Front. Appl. Math. Stat. 5, 28. (10.3389/fams.2019.00028) DOI

Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. 2004. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by granger causality. Proc. Natl Acad. Sci. USA 101, 9849-9854. (10.1073/pnas.0308538101) PubMed DOI PMC

Ding M, Chen Y, Bressler SL. 2006. Granger causality: basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications (eds B Schelter, M Winterhalder, J Timmer), pp. 437–460. Weinheim, Germany: Wiley-VCH.

Gregoriou GG, Gotts SJ, Zhou H, Desimone R. 2009. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207-1210. (10.1126/science.1171402) PubMed DOI PMC

Dhamala M, Rangarajan G, Ding M. 2008. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 100, 018701. (10.1103/PhysRevLett.100.018701) PubMed DOI

Bastos AM, Vezoli Julien, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P. 2015. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390-401. (10.1016/j.neuron.2014.12.018) PubMed DOI

Michalareas G, Vezoli J, Van Pelt S, Schoffelen J-M, Kennedy H, Fries P. 2016. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384-397. (10.1016/j.neuron.2015.12.018) PubMed DOI PMC

Holme P, Saramäki J. 2012. Temporal networks. Phys. Rep. 519, 97-125. (10.1016/j.physrep.2012.03.001) DOI

Calhoun VD, Miller R, Pearlson G, Adalı T. 2014. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262-274. (10.1016/j.neuron.2014.10.015) PubMed DOI PMC

Ioannides AA. 2007. Dynamic functional connectivity. Curr. Opin Neurobiol. 17, 161-170. (10.1016/j.conb.2007.03.008) PubMed DOI

Brovelli A, Badier J-M, Bonini F, Bartolomei F, Coulon O, Auzias G. 2017. Dynamic reconfiguration of visuomotor-related functional connectivity networks. J. Neurosci. 37, 839-853. (10.1523/JNEUROSCI.1672-16.2016) PubMed DOI PMC

Braun U et al. 2015. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11 678-11 683. (10.1073/pnas.1422487112) PubMed DOI PMC

Lombardo D et al. 2020. Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation. NeuroImage 222, 117155. (10.1016/j.neuroimage.2020.117155) PubMed DOI

Pedreschi N, Bernard C, Clawson W, Quilichini P, Barrat A, Battaglia D. 2020. Dynamic core-periphery structure of information sharing networks in entorhinal cortex and hippocampus. Netw. Neurosci. 4, 946-975. (10.1162/netn_a_00142) PubMed DOI PMC

Clawson W, Vicente AF, Ferraris M, Bernard C, Battaglia D, Quilichini PP. 2019. Computing hubs in the hippocampus and cortex. Sci. Adv. 5, eaax4843. (10.1126/sciadv.aax4843) PubMed DOI PMC

Kirst C, Timme M, Battaglia D. 2016. Dynamic information routing in complex networks. Nat. Commun. 7, 1-9. (10.1038/ncomms11061) PubMed DOI PMC

Battaglia D. 2014. Function follows dynamics: state-dependency of directed functional influences. In Directed information measures in neuroscience, (eds M Wibral, R Vicente, J Lizier) pp. 111–135. New York, NY: Springer. (10.1007/978-3-642-54474-3_5) DOI

Kopell NJ, Gritton HJ, Whittington MA, Kramer MA. 2014. Beyond the connectome: the dynome. Neuron 83, 1319-1328. (10.1016/j.neuron.2014.08.016) PubMed DOI PMC

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. 2008. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol. 4, e1000196. (10.1371/journal.pcbi.1000196) PubMed DOI PMC

Marder E, Goaillard J-M. 2006. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563-574. (10.1038/nrn1949) PubMed DOI

Marrelec Guillaume, Messé Arnaud, Giron Alain, Rudrauf David. 2016. Functional connectivity’s degenerate view of brain computation. PLoS Comput. Biol. 12, e1005031. (10.1371/journal.pcbi.1005031) PubMed DOI PMC

Stetter O, Battaglia D, Soriano J, Geisel T. 2012. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8, e1002653. (10.1371/journal.pcbi.1002653) PubMed DOI PMC

Honey CJ, Kötter R, Breakspear M, Sporns O. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10 240-10 245. (10.1073/pnas.0701519104) PubMed DOI PMC

Deco G, Jirsa VK, McIntosh AR. 2011. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43-56. (10.1038/nrn2961) PubMed DOI

Atasoy S, Donnelly I, Pearson J. 2016. Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7, 1-10. (10.1038/ncomms10340) PubMed DOI PMC

Deco G, Senden M, Jirsa V. 2012. How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 6, 68. (10.3389/fncom.2012.00068) PubMed DOI PMC

Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. 2020. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput. Biol. 16, e1008144. (10.1371/journal.pcbi.1008144) PubMed DOI PMC

Hansen ECA, Battaglia D, Spiegler A, Deco G, Jirsa VK. 2015. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage 105, 525-535. (10.1016/j.neuroimage.2014.11.001) PubMed DOI

Folke C, Biggs R, Norström AV, Reyers B, Rockström J. 2016. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41. (10.5751/ES-08748-210341) DOI

Martinez-Alier J. 1987. Ecological economics: energy, environment and society. Oxford, UK: Basil Blackwell.

Bodin Ö, Prell C. 2011. Social networks and natural resource management: uncovering the social fabric of environmental governance. Cambridge, UK: Cambridge University Press.

Barnes ML, Bodin Ö, Guerrero AM, McAllister RRJ, Alexander SM, Robins G. 2017. The social structural foundations of adaptation and transformation in social–ecological systems. Ecol. Soc. 22, 16. (10.5751/ES-09769-220416) DOI

Bodin Ö, Tengö M. 2012. Disentangling intangible social–ecological systems. Global Environ. Change 22, 430-439. (10.1016/j.gloenvcha.2012.01.005) DOI

Sayles JS, Garcia MM, Hamilton M, Alexander SM, Baggio JA, Fischer AP, Ingold K, Meredith GR, Pittman J. 2019. Social-ecological network analysis for sustainability sciences: a systematic review and innovative research agenda for the future. Environ. Res. Lett. 14, 093003. (10.1088/1748-9326/ab2619) PubMed DOI PMC

Prell C, Sun L, Feng K, He J, Hubacek K. 2017. Uncovering the spatially distant feedback loops of global trade: a network and input–output approach. Sci. Total Environ. 586, 401-408. (10.1016/j.scitotenv.2016.11.202) PubMed DOI

Wang P, Robins G, Pattison P, Lazega E. 2013. Exponential random graph models for multilevel networks. Soc. Netw. 35, 96-115. (10.1016/j.socnet.2013.01.004) DOI

Sáenz de Tejada R. 2007. Democracias de posguerra en Centroamérica : política, pobreza y desigualdad en Nicaragua, El Salvador y Guatemala (1979–2005). PhD thesis, Facultad Latinoamericana de Ciencias Sociales Sede, Ecuador.

Luhmann N. 1984. Soziale systeme: grundriss einer allgemeinen theorie. Frankfurt am Main, Germany: Suhrkamp.

Scott J. 2013. Social network analysis, 3rd edn, Los Angeles, CA: Sage.

Jansen D. 1999. Einführung in die netzwerkanalyse: Grundlagen, methoden, anwendung. Operladen, Germany: Leske & Budrich.

Stadtfeld C, Block P. 2017. Interactions, actors, and time: dynamic network actor models for relational events. Sociol. Sci. 4, 318-352. (10.15195/v4.a14) DOI

Fath BD, Scharler UM, Ulanowicz RE, Hannon B. 2007. Ecological network analysis: network construction. Ecol. Modell. 208, 49-55. (10.1016/j.ecolmodel.2007.04.029) DOI

Ulanowicz RE. 1983. Identifying the structure of cycling in ecosystems. Math. Biosci. 65, 219-237. (10.1016/0025-5564(83)90063-9) DOI

Leontief WW. 1936. Quantitative Input and Output relations in the economic systems of the United States. Rev. Econ. Stat. 18, 105-125. (10.2307/1927837) DOI

Miller RE, Blair PD. 2009. Input–output analysis: foundations and extensions. Cambridge, UK: Cambridge University Press.

Chen S, Chen B. 2015. Urban energy consumption: different insights from energy flow analysis, input–output analysis and ecological network analysis. Appl. Energy 138, 99-107. (10.1016/j.apenergy.2014.10.055) DOI

Fath BD, Patten BC. 1999. Quantifying resource homogenization using network flow analysis. Ecol. Modell 123, 193-205. (10.1016/S0304-3800(99)00130-1) DOI

Fath BD. 2004. Distributed control in ecological networks. Ecol. Modell. 179, 235-245. (10.1016/j.ecolmodel.2004.06.007) DOI

Hall CAS, Balogh S, Murphy DJR. 2009. What is the minimum EROI that a sustainable society must have? Energies 2, 25-47. (10.3390/en20100025) DOI

Georgescu-Roegen N. 1975. Energy and economic myths. South. Econ. J. 41, 347-381. (10.2307/1056148) DOI

Tainter J. 1988. The collapse of complex societies. Cambridge, UK: Cambridge University Press.

Odum HT. 2007. Environment, power, and society for the twenty-first century: the hierarchy of energy. New York, NY: Columbia University Press.

Hornborg A. 1998. Towards an ecological theory of unequal exchange: articulating world system theory and ecological economics. Ecol. Econ. 25, 127-136. (10.1016/S0921-8009(97)00100-6) DOI

Barnes ML, Bodin Ö, McClanahan TR, Kittinger JN, Hoey AS, Gaoue OG, Graham NAJ. 2019. Social–ecological alignment and ecological conditions in coral reefs. Nat. Commun. 10, 1-10. (10.1038/s41467-019-09994-1) PubMed DOI PMC

Janssen MA, Ostrom E. 2006. Resilience, vulnerability, and adaptation: a cross-cutting theme of the international human dimensions programme on global environmental change. Glob. Environ. Change 16, 237–239. (10.1016/j.gloenvcha.2006.04.003) DOI

Sayles JS, Baggio JA. 2017. Social–ecological network analysis of scale mismatches in estuary watershed restoration. Proc. Natl Acad. Sci. USA 114, E1776-E1785. (10.1073/pnas.1604405114) PubMed DOI PMC

Schlüter M, Haider LJ, Lade SJ, Lindkvist E, Martin R, Orach K, Wijermans N, Folke C. 2019. Capturing emergent phenomena in social-ecological systems. Ecol. Soc. 24, 11. (10.5751/ES-11012-240311). DOI

Bodin Ö, Mancilla García M, Robins G. 2020. Reconciling conflict and cooperation in environmental governance: a social network perspective. Annu. Rev. Environ. Resourc. 45, 471-495. (10.1146/annurev-environ-011020-064352) DOI

Nelson DR, Adger WN, Brown K. 2007. Adaptation to environmental change: contributions of a resilience framework. Annu. Rev. Environ. Resourc. 32, 395-419. (10.1146/annurev.energy.32.051807.090348) DOI

Newman L, Dale A. 2005. Network structure, diversity, and proactive resilience building: a response to Tompkins and Adger. Ecol. Soc. 10, R2. (10.5751/ES-01396-1001r02) DOI

Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J. 2010. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20. (10.5751/ES-03610-150420) DOI

Walker B, Holling CS, Carpenter SR, Kinzig A. 2004. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5. (10.5751/ES-00650-090205) DOI

Rocha CD, Tezel A, Talebi S, Koskela L. 2018. Product modularity, tolerance management, and visual management: potential synergies. In Proc. of the 26th Annual Conf. of the Int. Group for Lean Construction, Chennai, India, (ed. VA González) pp. 18–20. (10.24928/2018/0482) DOI

Kimmich C. 2013. Linking action situations: coordination, conflicts, and evolution in electricity provision for irrigation in Andhra Pradesh, India. Ecol. Econ. 90, 150-158. (10.1016/j.ecolecon.2013.03.017) DOI

Hughes G, Desantis A, Waszak F. 2013. Attenuation of auditory N1, results from identity-specific action-effect prediction. Eur. J. Neurosci. 37, 1152-1158. (10.1111/ejn.12120) PubMed DOI

Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE. 2015. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385, 430-440. (10.1016/S0140-6736(14)61698-6) PubMed DOI

Leontief W et al. 1974. Environmental repercussions and the economic structure: an input–output approach: a reply. Rev. Econ. Stat. 56, 109-110. (10.2307/1927535) DOI

Buzsáki G, Mizuseki K. 2014. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264-278. (10.1038/nrn3687) PubMed DOI PMC

Gallos LK, Song C, Havlin S, Makse HA. 2007. Scaling theory of transport in complex biological networks. Proc. Natl Acad. Sci. USA 104, 7746-7751. (10.1073/pnas.0700250104) PubMed DOI PMC

Lorenz EN. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141. (10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2) DOI

Josić K, Wayne CE. 2000. Dynamics of a ring of diffusively coupled Lorenz oscillators. J. Stat. Phys. 98, 1-30. (10.1023/A:1018600203530) DOI

Rössler OE. 1976. An equation for continuous chaos. Phys. Lett. A 57, 397-398. (10.1016/0375-9601(76)90101-8) DOI

Majhi S, Ghosh D, Kurths J. 2019. Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys. Rev. E 99, 012308. (10.1103/PhysRevE.99.012308) PubMed DOI

Selivanov AA, Lehnert J, Dahms T, Hövel P, Fradkov AL, Schöll E. 2012. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, 016201. (10.1103/PhysRevE.85.016201) PubMed DOI

Panteley E, Loria A, El Ati A. 2015. On the stability and robustness of Stuart-Landau oscillators. IFAC-PapersOnLine 48, 645-650. (10.1016/j.ifacol.2015.09.260) DOI

Minati L, Chiesa P, Tabarelli D, D’Incerti L, Jovicich J. 2015. Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators. Chaos 25, 033107. (10.1063/1.4914938) PubMed DOI PMC

Minati L, Ito H, Perinelli A, Ricci L, Faes L, Yoshimura N, Koike Y, Frasca M. 2019. Connectivity influences on nonlinear dynamics in weakly-synchronized networks: insights from Rössler systems, electronic chaotic oscillators, model and biological neurons. IEEE Access 7, 174 793-174 821. (10.1109/ACCESS.2019.2957014) DOI

Noël P-A, Brummitt CD, D’Souza RM. 2014. Bottom-up model of self-organized criticality on networks. Phys. Rev. E 89, 012807. (10.1103/PhysRevE.89.012807) PubMed DOI

Giuraniuc CV, Hatchett JPL, Indekeu JO, Leone M, Pérez Castillo I, Van Schaeybroeck B, Vanderzande C. 2006. Criticality on networks with topology-dependent interactions. Phys. Rev. E 74, 036108. (10.1103/PhysRevE.74.036108) PubMed DOI

Rubinov M, Sporns O, Thivierge J-P, Breakspear M. 2011. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput. Biol. 7, e1002038. (10.1371/journal.pcbi.1002038) PubMed DOI PMC

Moretti P, Muñoz MA. 2013. Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4, 1-10. (10.1038/ncomms3521) PubMed DOI

Hilgetag CC, Hütt M-T. 2014. Hierarchical modular brain connectivity is a stretch for criticality. Trends Cogn. Sci. 18, 114-115. (10.1016/j.tics.2013.10.016) PubMed DOI

Yeung MKS, Strogatz SH. 1999. Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 82, 648. (10.1103/PhysRevLett.82.648) DOI

Klinshov VV, Nekorkin VI. 2013. Synchronization of delay-coupled oscillator networks. Phys. Usp. 56, 1217. (10.3367/UFNe.0183.201312c.1323) DOI

Gil S, Mikhailov AS. 2009. Networks on the edge of chaos: global feedback control of turbulence in oscillator networks. Phys. Rev. E 79, 026219. (10.1103/PhysRevE.79.026219) PubMed DOI

Dhamala M, Jirsa VK, Ding M. 2004. Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104. (10.1103/PhysRevLett.92.074104) PubMed DOI

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R. 2009. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10 302-10 307. (10.1073/pnas.0901831106) PubMed DOI PMC

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L. 2002. Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555. (10.1126/science.1073374) PubMed DOI

Watts DJ, Strogatz SH. 1998. Collective dynamics of ’small-world’ networks. Nature 393, 440. (10.1038/30918) PubMed DOI

Erdős P, Rényi A. 1959. On random graphs. Publ. Math. (Debrecen) 6, 290.

Barabási A-L, Albert R. 1999. Emergence of scaling in random networks. Science 286, 509-512. (10.1126/science.286.5439.509) PubMed DOI

Maslov S, Sneppen K. 2002. Specificity and stability in topology of protein networks. Science 296, 910-913. (10.1126/science.1065103) PubMed DOI

Drossel B, Schwabl F. 1992. Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629. (10.1103/PhysRevLett.69.1629) PubMed DOI

Müller-Linow M, Marr C, Hütt M-T. 2006. Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. Phys. Rev. E 74, 016112. (10.1103/PhysRevE.74.016112) PubMed DOI

Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R. 2005. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137. (10.1103/RevModPhys.77.137) DOI

May RM. 1976. Simple mathematical models with very complicated dynamics. Nature 261, 459-467. (10.1038/261459a0) PubMed DOI

Vadivasova TE, Strelkova GI, Bogomolov SA, Anishchenko VS. 2016. Correlation analysis of the coherence–incoherence transition in a ring of nonlocally coupled logistic maps. Chaos 26, 093108. (10.1063/1.4962647) PubMed DOI

Rubinov M, Sporns O, van Leeuwen C, Breakspear M. 2009. Symbiotic relationship between brain structure and dynamics. BMC Neurosci. 10, 1-18. (10.1186/1471-2202-10-55) PubMed DOI PMC

FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445-466. (10.1016/S0006-3495(61)86902-6) PubMed DOI PMC

Nagumo J, Arimoto S, Yoshizawa S. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061-2070. (10.1109/JRPROC.1962.288235) DOI

Grace M, Hütt M-T. 2013. Predictability of spatio-temporal patterns in a lattice of coupled Fitzhugh–Nagumo oscillators. J. R. Soc. Interface 10, 20121016. (10.1098/rsif.2012.1016) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...