Biomechanical Rupture Risk Assessment in Management of Patients with Abdominal Aortic Aneurysm in COVID-19 Pandemic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18134
Czech Ministry of Education, Youth and Sports
No 951732
European High-Performance Computing Joint Undertaking
PubMed
36611424
PubMed Central
PMC9818825
DOI
10.3390/diagnostics13010132
PII: diagnostics13010132
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, abdominal aortic aneurysm, biomechanics, predictability, rupture risk,
- Publikační typ
- časopisecké články MeSH
Background: The acute phase of the COVID-19 pandemic requires a redefinition of healthcare system to increase the number of available intensive care units for COVID-19 patients. This leads to the postponement of elective surgeries including the treatment of abdominal aortic aneurysm (AAA). The probabilistic rupture risk index (PRRI) recently showed its advantage over the diameter criterion in AAA rupture risk assessment. Its major improvement is in increased specificity and yet has the same sensitivity as the maximal diameter criterion. The objective of this study was to test the clinical applicability of the PRRI method in a quasi-prospective patient cohort study. Methods: Nineteen patients (fourteen males, five females) with intact AAA who were postponed due to COVID-19 pandemic were included in this study. The PRRI was calculated at the baseline via finite element method models. If a case was diagnosed as high risk (PRRI > 3%), the patient was offered priority in AAA intervention. Cases were followed until 10 September 2021 and a number of false positive and false negative cases were recorded. Results: Each case was assessed within 3 days. Priority in intervention was offered to two patients with high PRRI. There were four false positive cases and no false negative cases classified by PRRI. In three cases, the follow-up was very short to reach any conclusion. Conclusions: Integrating PRRI into clinical workflow is possible. Longitudinal validation of PRRI did not fail and may significantly decrease the false positive rate in AAA treatment.
Department of Applied Mechanics VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
IT4Innovations VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Mouawad N.J., Woo K., Malgor R.D., Wohlauer M.V., Johnson A.P., Cuff R.F., Coleman D.M., Coogan S.M., Sheahan M.G., Shalhub S. The impact of the COVID-19 pandemic on vascular surgery practice in the United States. J. Vasc. Surg. 2020;73:772–779.e4. doi: 10.1016/j.jvs.2020.08.036. PubMed DOI PMC
McGuinness B., Troncone M., James L.P., Bisch S.P., Iyer V. Reassessing the operative threshold for abdominal aortic aneurysm repair in the context of COVID-19. J. Vasc. Surg. 2020;73:780–788. doi: 10.1016/j.jvs.2020.08.115. PubMed DOI PMC
Hoornweg L., Storm-Versloot M., Ubbink D., Koelemay M., Legemate D., Balm R. Meta Analysis on Mortality of Ruptured Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2008;35:558–570. doi: 10.1016/j.ejvs.2007.11.019. PubMed DOI
Powell J.T., Brady A.R., Brown L.C., Forbes J.F., Fowkes F.G.R., Greenhalgh R.M., Ruckley C.V., Thompson S.G. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 1998;352:1649–1655. PubMed
Lederle F.A., Johnson G.R., Wilson S.E., Ballard D.J., Jordan W.D., Blebea J., Jordan W.D., Blebea J., Littooy F.N., Freischlag J.A., et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287:2968–2972. doi: 10.1001/jama.287.22.2968. PubMed DOI
Greenhalgh R.M. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): Randomised controlled trial. Lancet. 2005;365:2187–2192. PubMed
Wanhainen A., Verzini F., Van Herzeele I., Allaire E., Bown M., Cohnert T., Dick F., van Herwaarden J., Karkos C., Koelemay M., et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2019;57:8–93. doi: 10.1016/j.ejvs.2018.09.020. PubMed DOI
Polzer S., Gasser T.C. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J. R. Soc. Interface. 2015;12:20150852. doi: 10.1098/rsif.2015.0852. PubMed DOI PMC
Khosla S., Morris D.R., Moxon J.V., Walker P.J., Gasser T.C., Golledge J. Meta-Analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 2014;101:1350–1357. doi: 10.1002/bjs.9578. PubMed DOI
Polzer S., Gasser T.C., Vlachovský R., Kubíček L., Lambert L., Man V., Novák K., Slažanský M., Burša J., Staffa R. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J. Vasc. Surg. 2019;71:617–626.e6. doi: 10.1016/j.jvs.2019.03.051. PubMed DOI
Shih M., Swearingen B., Rhee R. Ruptured Abdominal Aortic Aneurysm Treated with Endovascular Repair in a Patient with Active COVID-19 Infection during the Pandemic. Ann. Vasc. Surg. 2020;66:14–17. doi: 10.1016/j.avsg.2020.05.001. PubMed DOI PMC
Rinaldi L.F., Marazzi G., Marone E.M. Endovascular Treatment of a Ruptured Pararenal Abdominal Aortic Aneurysm in a Patient with Coronavirus Disease-2019: Suggestions and Case Report. Ann. Vasc. Surg. 2020;66:18–23. doi: 10.1016/j.avsg.2020.05.011. PubMed DOI PMC
Yammine H., Ballast J.K., Poulsen N., Arko F.R. EVAR in an asymptomatic COVID-19 positive patient with a symptomatic inflammatory abdominal aortic aneurysm. J. Vasc. Surg. Cases Innov. Tech. 2020;6:531–533. doi: 10.1016/j.jvscit.2020.08.016. PubMed DOI PMC
Mavioğlu H.L. Perioperative planning for cardiovascular operations in the COVID-19 pandemic. Turk. J. Thorac. Cardiovasc. Surg. 2020;28:236–243. doi: 10.5606/tgkdc.dergisi.2020.09294. PubMed DOI PMC
Community B.O. Blender—A 3D Modelling and Rendering Package. 2018. [(accessed on 25 May 2020)]. Stichting Blender Foundation, Amsterdam. Available online: http://www.blender.org.
Vande Geest J.P., Sacks M.S., Vorp D.A. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 2006;39:1324–1334. doi: 10.1016/j.jbiomech.2005.03.003. PubMed DOI
Polzer S., Gasser T.C., Bursa J., Staffa R., Vlachovsky R., Man V., Skacel P. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med. Eng. Phys. 2013;35:1282–1289. doi: 10.1016/j.medengphy.2013.01.008. PubMed DOI
Gasser T.C., Görgülü G., Folkesson M., Swedenborg J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 2008;48:179–188. doi: 10.1016/j.jvs.2008.01.036. PubMed DOI
Reeps C., Maier A., Pelisek J., Härtl F., Grabher-Meier V., Wall W.A., Essler M., Eckstein H.-H., Gee M.W. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol. 2012;12:717–733. doi: 10.1007/s10237-012-0436-1. PubMed DOI
Polzer S., Bursa J., Gasser T.C., Staffa R., Vlachovsky R. A Numerical Implementation to Predict Residual Strains from the Homogeneous Stress Hypothesis with Application to Abdominal Aortic Aneurysms. Ann. Biomed. Eng. 2013;41:1516–1527. doi: 10.1007/s10439-013-0749-y. PubMed DOI
Maier A. Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms. 2012. [(accessed on 5 October 2022)]. p. 197. Verlag Dr.Hut. Available online: https://www.dr.hut-verlag.de/978-3-8439-1066-8.html.
Polzer S., Kracík J., Novotný T., Kubíček L., Staffa R., Raghavan M.L. Methodology for Estimation of Annual Risk of Rupture for Abdominal Aortic Aneurysm. Comput. Methods Programs Biomed. 2020;200:105916. doi: 10.1016/j.cmpb.2020.105916. PubMed DOI
Darling R.C., Messina C.R., Brewster D.C., Ottinger L.W. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 1977;56:2968–2972. PubMed
Stather P.W., Sidloff D., Dattani N., Choke E., Bown M., Sayers R.D. Systematic review and meta-analysis of the early and late outcomes of open and endovascular repair of abdominal aortic aneurysm. Br. J. Surg. 2013;100:863–872. doi: 10.1002/bjs.9101. PubMed DOI
Schriefl A.J., Wolinski H., Regitnig P., Kohlwein S.D., Holzapfel G.A. An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface. 2013;10:20120760. doi: 10.1098/rsif.2012.0760. PubMed DOI PMC
COVID-19 Guidelines for Triage of Vascular Surgery Patients. [(accessed on 5 October 2022)]. Available online: https://www.facs.org/covid-19/clinical-guidance/elective-case/vascular-surgery.
Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P.G.T., Fu H., et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020;20:669–677. doi: 10.1016/S1473-3099(20)30243-7. Erratum in Lancet Infect. Dis. 2020, 20, e116. PubMed DOI PMC
Boyd A.J. Biomechanical prediction of abdominal aortic aneurysm rupture potential. [(accessed on 20 October 2022)];J. Vasc. Surgery. 2020 71:627. doi: 10.1016/j.jvs.2019.03.052. Available online: http://www.jvascsurg.org/article/S0741521419310389/fulltext. PubMed DOI