Chemokine binding protein vCCI attenuates vaccinia virus without affecting the cellular response elicited by immunization with a recombinant vaccinia vector carrying the HPV16 E7 gene
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23035852
PubMed Central
PMC3466910
DOI
10.1089/vim.2011.0090
Knihovny.cz E-resources
- MeSH
- Cell Line MeSH
- Chemokine CCL17 blood MeSH
- Chemokine CCL5 blood MeSH
- Chemokines, CC antagonists & inhibitors blood MeSH
- T-Lymphocytes, Cytotoxic immunology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Tumor Suppressor Proteins blood MeSH
- Papillomavirus E7 Proteins genetics immunology MeSH
- ADAM Proteins blood MeSH
- Cancer Vaccines genetics immunology MeSH
- Sequence Deletion MeSH
- Vaccines, Synthetic genetics immunology MeSH
- Vaccination MeSH
- Viral Proteins genetics metabolism MeSH
- Viral Vaccines immunology MeSH
- Vaccinia virus genetics immunology pathogenicity MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ADAM11 protein, human MeSH Browser
- Chemokine CCL17 MeSH
- Chemokine CCL5 MeSH
- Chemokines, CC MeSH
- Tumor Suppressor Proteins MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Browser
- Papillomavirus E7 Proteins MeSH
- ADAM Proteins MeSH
- Cancer Vaccines MeSH
- Vaccines, Synthetic MeSH
- Viral Proteins MeSH
- Viral Vaccines MeSH
Viral CC chemokine inhibitor (vCCI) of the clone P13 vaccinia virus (VACV) strain PRAHA lacks eight amino acids in the signal peptide sequence. To study the influence of vCCI on virus biology, a virus with the vCCI gene coding for a prolonged signal sequence was prepared. We found that secreted vCCI attenuated the virus in vivo, and that it correlated with decreased levels of RANTES, eotaxin, TARC, and MDC in the blood in comparison with the parental virus. We determined the influence of vCCI on the CTL response against VACV E3((140-148)) (VGPSNSPTF) and HPV16 E7((49-57)) (RAHYNIVTF) H-2D(b)-restricted epitopes. The examination of the specific CTL response elicited by immunization with the recombinant VACV-expressing tumor-associated HPV16 E7 antigen by IFN-γ ELISPOT showed that the immunogenicity of the recombinant VACV-producing secretory vCCI was similar to that of the parent virus or deletion mutant in the C23L/B29R locus. Immunization with the secretory vCCI-producing recombinant virus has a lower therapeutic anti-tumor effect against TC-1 tumors. Viral CCI downregulated the E7-specific response induced by gene gun immunization with the DNA vaccines pBSC-SigE7 LAMP and pBSC-vCCI. We also observed that the immune response against vCCI elicited by the DNA vaccine did not affect the multiplication of VACV in vivo.
See more in PubMed
Rossi D. Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–242. PubMed
Le Y. Zhou Y. Iribarren P. Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004;1:95–104. PubMed
Glass WG. Rosenberg HF. Murphy PM. Chemokine regulation of inflammation during acute viral infection. Curr Opin Allergy Clin Immunol. 2003;3:467–473. PubMed
Alcami A. Lira SA. Modulation of chemokine activity by viruses. Curr Opin Immunol. 2010;22:482–487. PubMed PMC
Patel AH. Gaffney DF. Subak-Sharpe JH. Stow ND. DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. J Gen Virol. 1990;71:2013–2021. PubMed
Alcami A. Symons JA. Collins PD. Williams TJ. Smith GL. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol. 1998;160:624–633. PubMed
Graham KA. Lalani AS. Macen JL, et al. The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology. 1997;229:12–24. PubMed
Smith CA. Smith TD. Smolak PJ, et al. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology. 1997;236:316–327. PubMed
Burns JM. Dairaghi DJ. Deitz M. Tsang M. Schall TJ. Comprehensive mapping of poxvirus vCCI chemokine-binding protein. Expanded range of ligand interactions and unusual dissociation kinetics. J Biol Chem. 2002;277:2785–2789. PubMed
Reading PC. Symons JA. Smith GL. A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol. 2003;170:1435–1442. PubMed
Goede V. Brogelli L. Ziche M. Augustin HG. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer. 1999;82:765–770. PubMed
Ma J. Wang Q. Fei T. Han JD. Chen YG. MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood. 2007;109:987–994. PubMed
Ueno T. Toi M. Saji H, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6:3282–3289. PubMed
Liss C. Fekete MJ. Hasina R. Lam CD. Lingen MW. Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer. 2001;93:781–785. PubMed
Salcedo R. Young HA. Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol. 2001;166:7571–7578. PubMed
Hwang J. Kim CW. Son KN, et al. Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Lett. 2004;570:47–51. PubMed
Hwang J. Son KN. Kim CW, et al. Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine. 2005;30:254–263. PubMed
Strasly M. Doronzo G. Cappello P, et al. CCL16 activates an angiogenic program in vascular endothelial cells. Blood. 2004;103:40–49. PubMed
Adler EP. Lemken CA. Katchen NS. Kurt RA. A dual role for tumor-derived chemokine RANTES (CCL5) Immunol Lett. 2003;90:187–194. PubMed
Son KN. Hwang J. Kwon BS. Kim J. Human CC chemokine CCL23 enhances expression of matrix metalloproteinase-2 and invasion of vascular endothelial cells. Biochem Biophys Res Commun. 2006;340:498–504. PubMed
Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29:372–383. PubMed
Ben-Baruch A. Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res. 2003;5:31–36. PubMed PMC
Kobayashi A. Weinberg V. Darragh T. Smith-McCune K. Evolving immunosuppressive microenvironment during human cervical carcinogenesis. Mucosal Immunol. 2008;1:412–420. PubMed
Lepique AP. Daghastanli KR. Cuccovia IM. Villa LL. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res. 2009;15:4391–4400. PubMed
Harrington KJ. Pandha HS. Vile RG. Viral Therapy of Cancer. John Wiley and Sons, Ltd.; Hoboken, NJ: 2007. Poxviruses as immunomodulatory cancer therapeutics; pp. 95–114.
Hsieh CJ. Kim TW. Hung CF, et al. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine. 2004;22:3993–4001. PubMed
Mackova J. Stasikova J. Kutinova L, et al. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother. 2006;55:39–46. PubMed PMC
Corona Gutierrez CM. Tinoco A. Navarro T, et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther. 2004;15:421–431. PubMed
Davidson EJ. Faulkner RL. Sehr P, et al. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7) Vaccine. 2004;22:2722–2729. PubMed
Fiander AN. Tristram AJ. Davidson EJ, et al. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer. 2006;16:1075–1081. PubMed
Boyle DB. Coupar BE. A dominant selectable marker for the construction of recombinant poxviruses. Gene. 1988;65:123–128. PubMed
Smahel M. Sima P. Ludvikova V. Vonka V. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virology. 2001;281:231–238. PubMed
Kutinova L. Ludvikova V. Simonova V, et al. Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them. Vaccine. 1995;13:487–493. PubMed
Joklik WK. The purification of four strains of poxvirus. Virology. 1962;18:9–18. PubMed
Nemeckova S. Stranska R. Subrtova J, et al. Immune response to E7 protein of human papillomavirus type 16 anchored on the cell surface. Cancer Immunol Immunother. 2002;51:111–119. PubMed PMC
Kutinova L. Ludvikova V. Maresova L, et al. Effect of virulence on immunogenicity of single and double vaccinia virus recombinants expressing differently immunogenic antigens: antibody-response inhibition induced by immunization with a mixture of recombinants differing in virulence. J Gen Virol. 1999;80:2901–2908. PubMed
Michl J. Metabolism of cells in tissue culture in vitro. I. The influence of serum protein fractions on the growth of normal and neoplastic cells. Exp Cell Res. 1961;23:324–330. PubMed
Zurkova K. Babiarova K. Hainz P, et al. The expression of the soluble isoform of hFlt3 ligand by recombinant vaccinia virus enhances immunogenicity of the vector. Oncol Rep. 2009;21:1335–1343. PubMed
Babiarova K. Kutinova L. Krystofova J, et al. Immunization with WT1 derived peptides by tattooing inhibits the growth of TRAMP-C2 prostate tumor in mice. Submitted 2012. PubMed
Smahel M. Tejklova P. Smahelova J. Polakova I. Mackova J. Mutation in the immunodominant epitope of the HPV16 E7 oncoprotein as a mechanism of tumor escape. Cancer Immunol Immunother. 2008;57:823–831. PubMed PMC
Feltkamp MC. Smits HL. Vierboom MP, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol. 1993;23:2242–2249. PubMed
Lehmann MH. Kastenmuller W. Kandemir JD. Brandt F. Suezer Y. Sutter G. Modified vaccinia virus Ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J Virol. 2009;83:2540–2552. PubMed PMC
Tscharke DC. Reading PC. Smith GL. Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol. 2002;83:1977–1986. PubMed
Andrew ME. Coupar BE. Boyle DB. Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunol Cell Biol. 1989;67:331–337. PubMed
Hembruff SL. Cheng N. Chemokine signaling in cancer: Implications on the tumor microenvironment and therapeutic targeting. Cancer Ther. 2009;7:254–267. PubMed PMC
Salcedo R. Ponce ML. Young HA, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96:34–40. PubMed
Loberg RD. Ying C. Craig M, et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 2007;67:9417–9424. PubMed
Qian BZ. Li J. Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–225. PubMed PMC
Cambien B. Richard-Fiardo P. Karimdjee BF, et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRbeta in colorectal carcinoma. PLoS One. 2011;6:e28842. PubMed PMC
Fridlender ZG. Buchlis G. Kapoor V, et al. CCL2 blockade augments cancer immunotherapy. Cancer Res. 2010;70:109–118. PubMed PMC
Delaloye J. Roger T. Steiner-Tardivel QG, et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009;5:e1000480. PubMed PMC
Smahel M. Smahelova J. Tejklova P. Tachezy R. Marinov I. Characterization of cell lines derived from tumors induced by TC-1 cells in mice preimmunized against HPV16 E7 oncoprotein. Int J Oncol. 2005;27:731–742. PubMed
Kutinova L. Ludvikova V. Simonova V, et al. Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them. Vaccine. 1995;13:487–493. PubMed
Appay V. Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol. 2001;22:83–87. PubMed
Rahbar R. Murooka TT. Hinek AA, et al. Vaccinia virus activation of CCR5 invokes tyrosine phosphorylation signaling events that support virus replication. J Virol. 2006;80:7245–7259. PubMed PMC
Rahbar R. Murooka TT. Fish EN. Role for CCR5 in dissemination of vaccinia virus in vivo. J Virol. 2009;83:2226–2236. PubMed PMC
Hickman HD. Takeda K. Skon CN, et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol. 2008;9:155–165. PubMed
Taub DD. Ortaldo JR. Turcovski-Corrales SM. Key ML. Longo DL. Murphy WJ. Beta chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production. J Leukoc Biol. 1996;59:81–89. PubMed
Sumida SM. McKay PF. Truitt DM, et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest. 2004;114:1334–1342. PubMed PMC