Multiple cholinergic signaling pathways in pituitary gonadotrophs

. 2013 Jan ; 154 (1) : 421-33. [epub] 20121116

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23161872

Grantová podpora
Intramural NIH HHS - United States

Acetylcholine (ACh) has been established as a paracrine factor in the anterior pituitary gland, but the receptors mediating ACh action and the cell types bearing these receptors have not been identified. Our results showed that the expression of the nicotinic subunits mRNAs followed the order β2 > β1 = α9 > α4 in cultured rat pituitary cells. The expression of the subunits in immortalized LβT2 mouse gonadotrophs followed the order β2 > α4 = α1. M4 > M3 muscarinic receptor mRNA were also identified in pituitary and LβT2 cells. The treatment of cultured pituitary cells with GnRH down-regulated the expression of α9 and α4 mRNAs, without affecting the expression of M3 and M4 receptor mRNAs, and ACh did not alter the expression of GnRH receptor mRNA. We also performed double immunostaining to show the expression of β2-subunit and M4 receptor proteins in gonadotrophs. Functional nicotinic channels capable of generating an inward current, facilitation of electrical activity, and Ca(2+) influx were identified in single gonadotrophs and LβT2 cells. In both cell types, the M3 receptor-mediated, phospholipase C-dependent Ca(2+) mobilization activated an outward apamin-sensitive K(+) current and caused hyperpolarization. The activation of M4 receptors by ACh inhibited cAMP production and GnRH-induced LH release in a pertussis toxin-sensitive manner. We concluded that multiple cholinergic receptors are expressed in gonadotrophs and that the main secretory action of ACh is inhibitory through M4 receptor-mediated down-regulation of cAMP production. The expression of nicotinic receptors in vitro compensates for the lack of regular GnRH stimulation of gonadotrophs.

Zobrazit více v PubMed

Caulfield MP, Birdsall NJ. 1998. International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279-290 PubMed

Hogg RC, Raggenbass M, Bertrand D. 2003. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1-46 PubMed

Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. 2009. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 61:407-423 PubMed

Denef C. 2008. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20:1-70 PubMed PMC

Zhang ZW, Feltz P. 1990. Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells. J Physiol 422:83-101 PubMed PMC

Poisbeau P, Trouslard J, Feltz P, Schlichter R. 1994. Calcium influx through neuronal-type nicotinic acetylcholine receptors present on the neuroendocrine cells of the porcine pars intermedia. Neuroendocrinology 60:378-388 PubMed

Van Strien FJ, Roubos EW, Vaudry H, Jenks BG. 1996. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Endocrinology 137:4298-4307 PubMed

Lamacz M, Tonon MC, Louiset E, Cazin L, Strosberg D, Vaudry H. 1989. Acetylcholine stimulates α-melanocyte-stimulating hormone release from frog pituitary melanotrophs through activation of muscarinic and nicotinic receptors. Endocrinology 125:707-714 PubMed

Louiset E, Cazin L, Duval O, Lamacz M, Tonon MC, Vaudry H. 1990. Effect of acetylcholine on the electrical and secretory activities of frog pituitary melanotrophs. Brain Res 533:300-308 PubMed

Schaeffer JM, Hsueh AJ. 1980. Acetylcholine receptors in the rat anterior pituitary gland. Endocrinology 106:1377-1381 PubMed

Burt DR, Taylor RL. 1980. Muscarinic receptor binding in sheep anterior pituitary. Neuroendocrinology 30:344-349 PubMed

Taylor RL, Burt DR. 1980. Pituitary cell cultures contain muscarinic receptors. Eur J Pharmacol 65:305-308 PubMed

Heisler S, Larose L, Morisset J. 1983. Muscarinic cholinergic inhibition of cyclic AMP formation and adrenocorticotropin secretion in mouse pituitary tumor cells. Biochem Biophys Res Commun 114:289-295 PubMed

Nakajima Y, Uchiyama M, Shirai Y, Sakuma Y, Kato M. 2001. Acetylcholine increases intracellular Ca2+ in the rat pituitary folliculostellate cells in primary culture. Am J Physiol Endocrinol Metab 280:E608–E615 PubMed

Wojcikiewicz RJ, Dobson PR, Brown BL. 1984. Muscarinic acetylcholine receptor activation causes inhibition of cyclic AMP accumulation, prolactin and growth hormone secretion in GH3 rat anterior pituitary tumour cells. Biochim Biophys Acta 805:25-29 PubMed

Carmeliet P, Baes M, Denef C. 1989. The glucocorticoid hormone dexamethasone reverses the growth hormone-releasing properties of the cholinomimetic carbachol. Endocrinology 124:2625-2634 PubMed

Carmeliet P, Denef C. 1988. Immunocytochemical and pharmacological evidence for an intrinsic cholinomimetic system modulating prolactin and growth hormone release in rat pituitary. Endocrinology 123:1128-1139 PubMed

Carmeliet P, Denef C. 1989. Synthesis and release of acetylcholine by normal and tumoral pituitary corticotrophs. Endocrinology 124:2218-2227 PubMed

Carmeliet P, Maertens P, Denef C. 1989. Stimulation and inhibition of prolactin release from rat pituitary lactotrophs by the cholinomimetic carbachol in vitro. Influence of hormonal environment and intercellular contacts. Mol Cell Endocrinol 63:121-131 PubMed

Sealfon SC, Weinstein H, Millar RP. 1997. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 18:180-205 PubMed

Tóth ZE, Mezey E. 2007. Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 55:545-554 PubMed

Stojilkovic SS, Tabak J, Bertram R. 2010. Ion channels and signaling in the pituitary gland. Endocr Rev 31:845-915 PubMed PMC

Tse A, Hille B. 1992. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science 255:462-464 PubMed

Kukuljan M, Stojilkovic SS, Rojas E, Catt KJ. 1992. Apamin-sensitive potassium channels mediate agonist-induced oscillations of membrane potential in pituitary gonadotrophs. FEBS Lett 301:19-22 PubMed

Zemková H, Vancek J. 1997. Inhibitory effect of melatonin on gonadotropin-releasing hormone-induced Ca2+ oscillations in pituitary cells of newborn rats. Neuroendocrinology 65:276-283 PubMed

Ishii M, Kurachi Y. 2006. Muscarinic acetylcholine receptors. Curr Pharm Des 12:3573-3581 PubMed

Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. 2005. International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463-472 PubMed

Wang J, Xu YQ, Liang YY, Gongora R, Warnock DG, Ma HP. 2007. An intermediate-conductance Ca(2+)-activated K (+) channel mediates B lymphoma cell cycle progression induced by serum. Pflugers Arch 454:945-956 PubMed

Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890-1893 PubMed

Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. 2005. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol 144:1089-1099 PubMed PMC

Uwada J, Anisuzzaman AS, Nishimune A, Yoshiki H, Muramatsu I. 2011. Intracellular distribution of functional M(1)-muscarinic acetylcholine receptors in N1E-115 neuroblastoma cells. J Neurochem 118:958-967 PubMed

Gosens R, Bromhaar MM, Tonkes A, Schaafsma D, Zaagsma J, Nelemans SA, Meurs H. 2004. Muscarinic M(3) receptor-dependent regulation of airway smooth muscle contractile phenotype. Br J Pharmacol 141:943-950 PubMed PMC

Papke RL, Heinemann SF. 1994. Partial agonist properties of cytisine on neuronal nicotinic receptors containing the β2 subunit. Mol Pharmacol 45:142-149 PubMed

Faghih R, Gopalakrishnan M, Briggs CA. 2008. Allosteric modulators of the α7 nicotinic acetylcholine receptor. J Med Chem 51:701-712 PubMed

Astles PC, Baker SR, Boot JR, Broad LM, Dell CP, Keenan M. 2002. Recent progress in the development of subtype selective nicotinic acetylcholine receptor ligands. Curr Drug Targets CNS Neurol Disord 1:337-348 PubMed

Dwoskin LP, Crooks PA. 2001. Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. J Pharmacol Exp Ther 298:395-402 PubMed

Collins T, Millar NS. 2010. Nicotinic acetylcholine receptor transmembrane mutations convert ivermectin from a positive to a negative allosteric modulator. Mol Pharmacol 78:198-204 PubMed PMC

Everett JW, Sawyer CH, Markee JE. 1949. A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology 44:234-250 PubMed

Libertun C, McCann SM. 1973. Blockade of the release of gonadotropins and prolactin by subcutaneous or intraventricular injection of atropine in male and female rats. Endocrinology 92:1714-1724 PubMed

Simonovic I, Motta M, Martini L. 1974. Acetylcholine and the release of the follicle-stimulating hormone-releasing factor. Endocrinology 95:1373-1379 PubMed

Fiorindo1 RP, Martini L. 1975. Evidence for a cholinergic component in the neuroendocrine control of luteinizing hormone (LH) secretion. Neuroendocrinology 18:322-332 PubMed

Libertun C, McCann SM. 1976. Blockade of the postorchidectomy increase in gonadotropins by implants of atropine into the hypothalamus. Proc Soc Exp Biol Med 152:143-146 PubMed

Billiar RB, Kalash J, Romita V, Tsuji K, Kosuge T. 1988. Neosurugatoxin: CNS acetylcholine receptors and luteinizing hormone secretion in ovariectomized rats. Brain Res Bull 20:315-322 PubMed

Kalash J, Romita V, Billiar RB. 1989. Third ventricular injection of α-bungarotoxin decreases pulsatile luteinizing hormone secretion in the ovariectomized rat. Neuroendocrinology 49:462-470 PubMed

Kalra SP, Kalra PS. 1983. Neural regulation of luteinizing hormone secretion in the rat. Endocr Rev 4:311-351 PubMed

Richardson SB, Prasad JA, Hollander CS. 1982. Acetylcholine, melatonin, and potassium depolarization stimulate release of luteinizing hormone-releasing hormone from rat hypothalamus in vitro. Proc Natl Acad Sci USA 79:2686-2689 PubMed PMC

Negro-Vilar A. 1982. The median eminence as a model to study presynaptic regulation of neural peptide release. Peptides 3:305-310 PubMed

Koren D, Egozi Y, Sokolovsky M. 1992. Muscarinic involvement in the regulation of gonadotropin-releasing hormone in the cyclic rat. Mol Cell Endocrinol 90:87-93 PubMed

Krsmanovic LZ, Mores N, Navarro CE, Saeed SA, Arora KK, Catt KJ. 1998. Muscarinic regulation of intracellular signaling and neurosecretion in gonadotropin-releasing hormone neurons. Endocrinology 139:4037-4043 PubMed

Turi GF, Liposits Z, Hrabovszky E. 2008. Cholinergic afferents to gonadotropin-releasing hormone neurons of the rat. Neurochem Int 52:723-728 PubMed

Samson WK. 1998. More pieces of the puzzle in place, even more discovered missing. Endocrinology 139:4035. PubMed

Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. 1992. A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31-37 PubMed

Puskar NL, Xiu X, Lester HA, Dougherty DA. 2011. Two neuronal nicotinic acetylcholine receptors, α4β4 and α7, show differential agonist binding modes. J Biol Chem 286:14618-14627 PubMed PMC

Drescher DG, Ramakrishnan NA, Drescher MJ, Chun W, Wang X, Myers SF, Green GE, Sadrazodi K, Karadaghy AA, Poopat N, Karpenko AN, Khan KM, Hatfield JS. 2004. Cloning and characterization of α9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience 127:737-752 PubMed

Wu CH, Lee CH, Ho YS. 2011. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy. Clin Cancer Res 17:3533-3541 PubMed

Hollenhorst MI, Lips KS, Weitz A, Krasteva G, Kummer W, Fronius M. 2012. Evidence for functional atypical nicotinic receptors that activate K+-dependent Cl- secretion in mouse tracheal epithelium. Am J Respir Cell Mol Biol 46:106-114 PubMed

Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S. 1994. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705-715 PubMed

Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB. 1999. Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23:93-103 PubMed

Murthy V, Taranda J, Elgoyhen AB, Vetter DE. 2009. Activity of nAChRs containing α9 subunits modulates synapse stabilization via bidirectional signaling programs. Dev Neurobiol 69:931-949 PubMed PMC

Keizer J, Li YX, Stojilkovic S, Rinzel J. 1995. InsP3-induced Ca2+ excitability of the endoplasmic reticulum. Mol Biol Cell 6:945-951 PubMed PMC

Li YX, Keizer J, Stojilkovic SS, Rinzel J. 1995. Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. Am J Physiol 269:C1079–C1092 PubMed

Zheng L, Paik WY, Cesnjaj M, Balla T, Tomic M, Catt KJ, Stojilkovic SS. 1995. Effects of the phospholipase-C inhibitor, U73122, on signaling and secretion in pituitary gonadotrophs. Endocrinology 136:1079-1088 PubMed

Young PW, Bicknell RJ, Schofield JG. 1979. Acetylcholine stimulates growth hormone secretion, phosphatidyl inositol labelling, 45Ca2+ efflux and cyclic GMP accumulation in bovine anterior pituitary glands. J Endocrinol 80:203-213 PubMed

Onali P, Eva C, Olianas MC, Schwartz JP, Costa E. 1983. In GH3 pituitary cells, acetylcholine and vasoactive intestinal peptide antagonistically modulate adenylate cyclase, cyclic AMP content, and prolactin secretion. Mol Pharmacol 24:189-194 PubMed

Sikdar SK, Zorec R, Mason WT. 1990. cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs. FEBS Lett 273:150-154 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...