Multiple cholinergic signaling pathways in pituitary gonadotrophs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Intramural NIH HHS - United States
PubMed
23161872
PubMed Central
PMC3529387
DOI
10.1210/en.2012-1554
PII: en.2012-1554
Knihovny.cz E-zdroje
- MeSH
- AMP cyklický metabolismus MeSH
- elektrofyziologie MeSH
- gonadotropní buňky MeSH
- hypofýza metabolismus MeSH
- imunohistochemie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- luteinizační hormon genetika metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani Sprague-Dawley MeSH
- receptor muskarinový M3 genetika metabolismus MeSH
- receptor muskarinový M4 genetika metabolismus MeSH
- signální transdukce genetika fyziologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- AMP cyklický MeSH
- luteinizační hormon MeSH
- receptor muskarinový M3 MeSH
- receptor muskarinový M4 MeSH
- vápník MeSH
Acetylcholine (ACh) has been established as a paracrine factor in the anterior pituitary gland, but the receptors mediating ACh action and the cell types bearing these receptors have not been identified. Our results showed that the expression of the nicotinic subunits mRNAs followed the order β2 > β1 = α9 > α4 in cultured rat pituitary cells. The expression of the subunits in immortalized LβT2 mouse gonadotrophs followed the order β2 > α4 = α1. M4 > M3 muscarinic receptor mRNA were also identified in pituitary and LβT2 cells. The treatment of cultured pituitary cells with GnRH down-regulated the expression of α9 and α4 mRNAs, without affecting the expression of M3 and M4 receptor mRNAs, and ACh did not alter the expression of GnRH receptor mRNA. We also performed double immunostaining to show the expression of β2-subunit and M4 receptor proteins in gonadotrophs. Functional nicotinic channels capable of generating an inward current, facilitation of electrical activity, and Ca(2+) influx were identified in single gonadotrophs and LβT2 cells. In both cell types, the M3 receptor-mediated, phospholipase C-dependent Ca(2+) mobilization activated an outward apamin-sensitive K(+) current and caused hyperpolarization. The activation of M4 receptors by ACh inhibited cAMP production and GnRH-induced LH release in a pertussis toxin-sensitive manner. We concluded that multiple cholinergic receptors are expressed in gonadotrophs and that the main secretory action of ACh is inhibitory through M4 receptor-mediated down-regulation of cAMP production. The expression of nicotinic receptors in vitro compensates for the lack of regular GnRH stimulation of gonadotrophs.
Zobrazit více v PubMed
Caulfield MP, Birdsall NJ. 1998. International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279-290 PubMed
Hogg RC, Raggenbass M, Bertrand D. 2003. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1-46 PubMed
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. 2009. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 61:407-423 PubMed
Denef C. 2008. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20:1-70 PubMed PMC
Zhang ZW, Feltz P. 1990. Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells. J Physiol 422:83-101 PubMed PMC
Poisbeau P, Trouslard J, Feltz P, Schlichter R. 1994. Calcium influx through neuronal-type nicotinic acetylcholine receptors present on the neuroendocrine cells of the porcine pars intermedia. Neuroendocrinology 60:378-388 PubMed
Van Strien FJ, Roubos EW, Vaudry H, Jenks BG. 1996. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Endocrinology 137:4298-4307 PubMed
Lamacz M, Tonon MC, Louiset E, Cazin L, Strosberg D, Vaudry H. 1989. Acetylcholine stimulates α-melanocyte-stimulating hormone release from frog pituitary melanotrophs through activation of muscarinic and nicotinic receptors. Endocrinology 125:707-714 PubMed
Louiset E, Cazin L, Duval O, Lamacz M, Tonon MC, Vaudry H. 1990. Effect of acetylcholine on the electrical and secretory activities of frog pituitary melanotrophs. Brain Res 533:300-308 PubMed
Schaeffer JM, Hsueh AJ. 1980. Acetylcholine receptors in the rat anterior pituitary gland. Endocrinology 106:1377-1381 PubMed
Burt DR, Taylor RL. 1980. Muscarinic receptor binding in sheep anterior pituitary. Neuroendocrinology 30:344-349 PubMed
Taylor RL, Burt DR. 1980. Pituitary cell cultures contain muscarinic receptors. Eur J Pharmacol 65:305-308 PubMed
Heisler S, Larose L, Morisset J. 1983. Muscarinic cholinergic inhibition of cyclic AMP formation and adrenocorticotropin secretion in mouse pituitary tumor cells. Biochem Biophys Res Commun 114:289-295 PubMed
Nakajima Y, Uchiyama M, Shirai Y, Sakuma Y, Kato M. 2001. Acetylcholine increases intracellular Ca2+ in the rat pituitary folliculostellate cells in primary culture. Am J Physiol Endocrinol Metab 280:E608–E615 PubMed
Wojcikiewicz RJ, Dobson PR, Brown BL. 1984. Muscarinic acetylcholine receptor activation causes inhibition of cyclic AMP accumulation, prolactin and growth hormone secretion in GH3 rat anterior pituitary tumour cells. Biochim Biophys Acta 805:25-29 PubMed
Carmeliet P, Baes M, Denef C. 1989. The glucocorticoid hormone dexamethasone reverses the growth hormone-releasing properties of the cholinomimetic carbachol. Endocrinology 124:2625-2634 PubMed
Carmeliet P, Denef C. 1988. Immunocytochemical and pharmacological evidence for an intrinsic cholinomimetic system modulating prolactin and growth hormone release in rat pituitary. Endocrinology 123:1128-1139 PubMed
Carmeliet P, Denef C. 1989. Synthesis and release of acetylcholine by normal and tumoral pituitary corticotrophs. Endocrinology 124:2218-2227 PubMed
Carmeliet P, Maertens P, Denef C. 1989. Stimulation and inhibition of prolactin release from rat pituitary lactotrophs by the cholinomimetic carbachol in vitro. Influence of hormonal environment and intercellular contacts. Mol Cell Endocrinol 63:121-131 PubMed
Sealfon SC, Weinstein H, Millar RP. 1997. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 18:180-205 PubMed
Tóth ZE, Mezey E. 2007. Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 55:545-554 PubMed
Stojilkovic SS, Tabak J, Bertram R. 2010. Ion channels and signaling in the pituitary gland. Endocr Rev 31:845-915 PubMed PMC
Tse A, Hille B. 1992. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science 255:462-464 PubMed
Kukuljan M, Stojilkovic SS, Rojas E, Catt KJ. 1992. Apamin-sensitive potassium channels mediate agonist-induced oscillations of membrane potential in pituitary gonadotrophs. FEBS Lett 301:19-22 PubMed
Zemková H, Vancek J. 1997. Inhibitory effect of melatonin on gonadotropin-releasing hormone-induced Ca2+ oscillations in pituitary cells of newborn rats. Neuroendocrinology 65:276-283 PubMed
Ishii M, Kurachi Y. 2006. Muscarinic acetylcholine receptors. Curr Pharm Des 12:3573-3581 PubMed
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. 2005. International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463-472 PubMed
Wang J, Xu YQ, Liang YY, Gongora R, Warnock DG, Ma HP. 2007. An intermediate-conductance Ca(2+)-activated K (+) channel mediates B lymphoma cell cycle progression induced by serum. Pflugers Arch 454:945-956 PubMed
Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890-1893 PubMed
Mansfield KJ, Liu L, Mitchelson FJ, Moore KH, Millard RJ, Burcher E. 2005. Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol 144:1089-1099 PubMed PMC
Uwada J, Anisuzzaman AS, Nishimune A, Yoshiki H, Muramatsu I. 2011. Intracellular distribution of functional M(1)-muscarinic acetylcholine receptors in N1E-115 neuroblastoma cells. J Neurochem 118:958-967 PubMed
Gosens R, Bromhaar MM, Tonkes A, Schaafsma D, Zaagsma J, Nelemans SA, Meurs H. 2004. Muscarinic M(3) receptor-dependent regulation of airway smooth muscle contractile phenotype. Br J Pharmacol 141:943-950 PubMed PMC
Papke RL, Heinemann SF. 1994. Partial agonist properties of cytisine on neuronal nicotinic receptors containing the β2 subunit. Mol Pharmacol 45:142-149 PubMed
Faghih R, Gopalakrishnan M, Briggs CA. 2008. Allosteric modulators of the α7 nicotinic acetylcholine receptor. J Med Chem 51:701-712 PubMed
Astles PC, Baker SR, Boot JR, Broad LM, Dell CP, Keenan M. 2002. Recent progress in the development of subtype selective nicotinic acetylcholine receptor ligands. Curr Drug Targets CNS Neurol Disord 1:337-348 PubMed
Dwoskin LP, Crooks PA. 2001. Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. J Pharmacol Exp Ther 298:395-402 PubMed
Collins T, Millar NS. 2010. Nicotinic acetylcholine receptor transmembrane mutations convert ivermectin from a positive to a negative allosteric modulator. Mol Pharmacol 78:198-204 PubMed PMC
Everett JW, Sawyer CH, Markee JE. 1949. A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology 44:234-250 PubMed
Libertun C, McCann SM. 1973. Blockade of the release of gonadotropins and prolactin by subcutaneous or intraventricular injection of atropine in male and female rats. Endocrinology 92:1714-1724 PubMed
Simonovic I, Motta M, Martini L. 1974. Acetylcholine and the release of the follicle-stimulating hormone-releasing factor. Endocrinology 95:1373-1379 PubMed
Fiorindo1 RP, Martini L. 1975. Evidence for a cholinergic component in the neuroendocrine control of luteinizing hormone (LH) secretion. Neuroendocrinology 18:322-332 PubMed
Libertun C, McCann SM. 1976. Blockade of the postorchidectomy increase in gonadotropins by implants of atropine into the hypothalamus. Proc Soc Exp Biol Med 152:143-146 PubMed
Billiar RB, Kalash J, Romita V, Tsuji K, Kosuge T. 1988. Neosurugatoxin: CNS acetylcholine receptors and luteinizing hormone secretion in ovariectomized rats. Brain Res Bull 20:315-322 PubMed
Kalash J, Romita V, Billiar RB. 1989. Third ventricular injection of α-bungarotoxin decreases pulsatile luteinizing hormone secretion in the ovariectomized rat. Neuroendocrinology 49:462-470 PubMed
Kalra SP, Kalra PS. 1983. Neural regulation of luteinizing hormone secretion in the rat. Endocr Rev 4:311-351 PubMed
Richardson SB, Prasad JA, Hollander CS. 1982. Acetylcholine, melatonin, and potassium depolarization stimulate release of luteinizing hormone-releasing hormone from rat hypothalamus in vitro. Proc Natl Acad Sci USA 79:2686-2689 PubMed PMC
Negro-Vilar A. 1982. The median eminence as a model to study presynaptic regulation of neural peptide release. Peptides 3:305-310 PubMed
Koren D, Egozi Y, Sokolovsky M. 1992. Muscarinic involvement in the regulation of gonadotropin-releasing hormone in the cyclic rat. Mol Cell Endocrinol 90:87-93 PubMed
Krsmanovic LZ, Mores N, Navarro CE, Saeed SA, Arora KK, Catt KJ. 1998. Muscarinic regulation of intracellular signaling and neurosecretion in gonadotropin-releasing hormone neurons. Endocrinology 139:4037-4043 PubMed
Turi GF, Liposits Z, Hrabovszky E. 2008. Cholinergic afferents to gonadotropin-releasing hormone neurons of the rat. Neurochem Int 52:723-728 PubMed
Samson WK. 1998. More pieces of the puzzle in place, even more discovered missing. Endocrinology 139:4035. PubMed
Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. 1992. A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31-37 PubMed
Puskar NL, Xiu X, Lester HA, Dougherty DA. 2011. Two neuronal nicotinic acetylcholine receptors, α4β4 and α7, show differential agonist binding modes. J Biol Chem 286:14618-14627 PubMed PMC
Drescher DG, Ramakrishnan NA, Drescher MJ, Chun W, Wang X, Myers SF, Green GE, Sadrazodi K, Karadaghy AA, Poopat N, Karpenko AN, Khan KM, Hatfield JS. 2004. Cloning and characterization of α9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience 127:737-752 PubMed
Wu CH, Lee CH, Ho YS. 2011. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy. Clin Cancer Res 17:3533-3541 PubMed
Hollenhorst MI, Lips KS, Weitz A, Krasteva G, Kummer W, Fronius M. 2012. Evidence for functional atypical nicotinic receptors that activate K+-dependent Cl- secretion in mouse tracheal epithelium. Am J Respir Cell Mol Biol 46:106-114 PubMed
Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S. 1994. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705-715 PubMed
Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB. 1999. Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23:93-103 PubMed
Murthy V, Taranda J, Elgoyhen AB, Vetter DE. 2009. Activity of nAChRs containing α9 subunits modulates synapse stabilization via bidirectional signaling programs. Dev Neurobiol 69:931-949 PubMed PMC
Keizer J, Li YX, Stojilkovic S, Rinzel J. 1995. InsP3-induced Ca2+ excitability of the endoplasmic reticulum. Mol Biol Cell 6:945-951 PubMed PMC
Li YX, Keizer J, Stojilkovic SS, Rinzel J. 1995. Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. Am J Physiol 269:C1079–C1092 PubMed
Zheng L, Paik WY, Cesnjaj M, Balla T, Tomic M, Catt KJ, Stojilkovic SS. 1995. Effects of the phospholipase-C inhibitor, U73122, on signaling and secretion in pituitary gonadotrophs. Endocrinology 136:1079-1088 PubMed
Young PW, Bicknell RJ, Schofield JG. 1979. Acetylcholine stimulates growth hormone secretion, phosphatidyl inositol labelling, 45Ca2+ efflux and cyclic GMP accumulation in bovine anterior pituitary glands. J Endocrinol 80:203-213 PubMed
Onali P, Eva C, Olianas MC, Schwartz JP, Costa E. 1983. In GH3 pituitary cells, acetylcholine and vasoactive intestinal peptide antagonistically modulate adenylate cyclase, cyclic AMP content, and prolactin secretion. Mol Pharmacol 24:189-194 PubMed
Sikdar SK, Zorec R, Mason WT. 1990. cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs. FEBS Lett 273:150-154 PubMed
Neurotransmitter receptors as signaling platforms in anterior pituitary cells
Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion