Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ZIA HD000195
Intramural NIH HHS - United States
PubMed
28649232
PubMed Central
PMC5465261
DOI
10.3389/fendo.2017.00126
Knihovny.cz E-zdroje
- Klíčová slova
- calcium signaling, electrical activity, gonadotrophs, gonadotropin-releasing hormone, ligand-gated channels, luteinizing hormone secretion, voltage-gated channels,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs) spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM). These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA), acetylcholine (ACh), and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH) and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.
Zobrazit více v PubMed
McArdle CA, Roberson MS. Gonadotropes and gonadotropin-releasing hormone signaling. Fourth ed In: Plant TM, Zeleznik AJ, editors. Knobil and Neill’s Physiology or Reproduction. Waltham, MA: Academic Press; (2015). p. 335–97.
Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol (2014) 385:28–35.10.1016/j.mce.2013.09.012 PubMed DOI PMC
Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol (2010) 314:192–203.10.1016/j.mce.2009.09.003 PubMed DOI PMC
Hapgood JP, Sadie H, van Biljon W, Ronacher K. Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J Neuroendocrinol (2005) 17:619–38.10.1111/j.1365-2826.2005.01353.x PubMed DOI
Kucka M, Bjelobaba I, Clokie SJ, Klein DC, Stojilkovic SS. Female-specific induction of rat pituitary dentin matrix protein-1 by GnRH. Mol Endocrinol (2013) 27:1840–55.10.1210/me.2013-1068 PubMed DOI PMC
Fowkes RC, King P, Burrin JM. Regulation of human glycoprotein hormone alpha-subunit gene transcription in LbetaT2 gonadotropes by protein kinase C and extracellular signal-regulated kinase 1/2. Biol Reprod (2002) 67:725–34.10.1095/biolreprod67.3.725 PubMed DOI
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev (2009) 30:790–829.10.1210/er.2009-0008 PubMed DOI PMC
Stojilkovic SS. Pituitary cell type-specific electrical activity, calcium signaling and secretion. Biol Res (2006) 39:403–23.10.4067/S0716-97602006000300004 PubMed DOI
Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev (2010) 31:845–915.10.1210/er.2010-0005 PubMed DOI PMC
Stojilkovic SS. Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium (2012) 51:212–21.10.1016/j.ceca.2011.11.003 PubMed DOI PMC
Millar RP, Lu ZL, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR. Gonadotropin-releasing hormone receptors. Endocr Rev (2004) 25:235–75.10.1210/er.2003-0002 PubMed DOI
Naor Z. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol (2009) 30:10–29.10.1016/j.yfrne.2008.07.001 PubMed DOI
Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev (2005) 57:387–95.10.1124/pr.57.4.13 PubMed DOI
Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev (2005) 57:397–409.10.1124/pr.57.4.5 PubMed DOI
Tse A, Hille B. Role of voltage-gated Na+ and Ca2+ channels in gonadotropin-releasing hormone-induced membrane potential changes in identified rat gonadotropes. Endocrinology (1993) 132:1475–81.10.1210/endo.132.4.8384989 PubMed DOI
Van Goor F, Zivadinovic D, Stojilkovic SS. Differential expression of ionic channels in rat anterior pituitary cells. Mol Endocrinol (2001) 15:1222–36.10.1210/mend.15.7.0668 PubMed DOI
Heyward PM, Chen C, Clarke IJ. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes. Neuroendocrinology (1995) 61:609–21.10.1159/000126887 PubMed DOI
Price CJ, Goldberg JI, Chang JP. Voltage-activated ionic currents in goldfish pituitary cells. Gen Comp Endocrinol (1993) 92:16–30.10.1006/gcen.1993.1139 PubMed DOI
Van Goor F, Goldberg JI, Chang JP. Electrical membrane properties and ionic currents in cultured goldfish gonadotrophs. Can J Physiol Pharmacol (1996) 74:729–43.10.1139/y96-067 PubMed DOI
Waring DW, Turgeon JL. Estradiol inhibition of voltage-activated and gonadotropin-releasing hormone-induced currents in mouse gonadotrophs. Endocrinology (2006) 147:5798–805.10.1210/en.2006-1112 PubMed DOI
Wen S, Schwarz JR, Niculescu D, Dinu C, Bauer CK, Hirdes W, et al. Functional characterization of genetically labeled gonadotropes. Endocrinology (2008) 149:2701–11.10.1210/en.2007-1502 PubMed DOI
Bosma MM, Hille B. Electrophysiological properties of a cell line of the gonadotrope lineage. Endocrinology (1992) 130:3411–20.10.1210/endo.130.6.1317783 PubMed DOI
Tiwari JK, Sikdar SK. Voltage gated Na+ channels contribute to membrane voltage fluctuation in alphaT3-1 pituitary gonadotroph cells. Neurosci Lett (1998) 242:167–71.10.1016/S0304-3940(98)00046-9 PubMed DOI
Kucka M, Kretschmannova K, Murano T, Wu CP, Zemkova H, Ambudkar SV, et al. Dependence of multidrug resistance protein-mediated cyclic nucleotide efflux on the background sodium conductance. Mol Pharmacol (2010) 77:270–9.10.1124/mol.109.059386 PubMed DOI PMC
Sankaranarayanan S, Simasko SM. A role for a background sodium current in spontaneous action potentials and secretion from rat lactotrophs. Am J Physiol (1996) 271:C1927–34. PubMed
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev (2005) 57:411–25.10.1124/pr.57.4.5 PubMed DOI
Mason WT, Sikdar SK. Characteristics of voltage-gated Ca2+ currents in ovine gonadotrophs. J Physiol (1989) 415:367–91.10.1113/jphysiol.1989.sp017726 PubMed DOI PMC
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev (2005) 57:473–508.10.1124/pr.57.4.10 PubMed DOI
Cowley MA, Chen C, Clarke IJ. Estrogen transiently increases delayed rectifier, voltage-dependent potassium currents in ovine gonadotropes. Neuroendocrinology (1999) 69:254–60.10.1159/000054426 PubMed DOI
Haug TM, Hodne K, Weltzien FA, Sand O. Electrophysiological properties of pituitary cells in primary culture from Atlantic cod (Gadus morhua). Neuroendocrinology (2007) 86:38–47.10.1159/000103867 PubMed DOI
Mei YA, Soriani O, Castel H, Vaudry H, Cazin L. Adenosine potentiates the delayed-rectifier potassium conductance but has no effect on the hyperpolarization-activated Ih current in frog melanotrophs. Brain Res (1998) 793:271–8.10.1016/S0006-8993(98)00184-X PubMed DOI
Herrington J, Lingle CJ. Multiple components of voltage-dependent potassium current in normal rat anterior pituitary cells. J Neurophysiol (1994) 72:719–29. PubMed
Chen C, Zhang J, Vincent JD, Israel JM. Somatostatin increases voltage-dependent potassium currents in rat somatotrophs. Am J Physiol (1990) 259:C854–61. PubMed
Hirdes W, Dinu C, Bauer CK, Boehm U, Schwarz JR. Gonadotropin-releasing hormone inhibits ether-a-go-go-related gene K+ currents in mouse gonadotropes. Endocrinology (2010) 151:1079–88.10.1210/en.2009-0718 PubMed DOI
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev (2005) 57:463–72.10.1124/pr.57.4.9 PubMed DOI
Stojilkovic SS, Zemkova H, Van Goor F. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol Metab (2005) 16:152–9.10.1016/j.tem.2005.03.003 PubMed DOI
Hodne K, Strandabo RA, von Krogh K, Nourizadeh-Lillabadi R, Sand O, Weltzien FA, et al. Electrophysiological differences between fshb- and lhb-expressing gonadotropes in primary culture. Endocrinology (2013) 154:3319–30.10.1210/en.2013-1164 PubMed DOI
Kukuljan M, Stojilkovic SS, Rojas E, Catt KJ. Apamin-sensitive potassium channels mediate agonist-induced oscillations of membrane potential in pituitary gonadotrophs. FEBS Lett (1992) 301:19–22.10.1016/0014-5793(92)80201-Q PubMed DOI
Tse A, Hille B. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science (1992) 255:462–4.10.1126/science.1734523 PubMed DOI
Waring DW, Turgeon JL. Ca2+-activated K+ channels in gonadotropin-releasing hormone-stimulated mouse gonadotrophs. Endocrinology (2009) 150:2264–72.10.1210/en.2008-1442 PubMed DOI PMC
Kretschmannova K, Kucka M, Gonzalez-Iglesias AE, Stojilkovic SS. The expression and role of hyperpolarization-activated and cyclic nucleotide-gated channels in endocrine anterior pituitary cells. Mol Endocrinol (2012) 26:153–64.10.1210/me.2011-1207 PubMed DOI PMC
Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol (2006) 68:375–401.10.1146/annurev.physiol.68.040104.134728 PubMed DOI
Tomic M, Kucka M, Kretschmannova K, Li S, Nesterova M, Stratakis CA, et al. Role of nonselective cation channels in spontaneous and protein kinase A-stimulated calcium signaling in pituitary cells. Am J Physiol Endocrinol Metab (2011) 301:E370–9.10.1152/ajpendo.00130.2011 PubMed DOI PMC
Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev (2005) 57:427–50.10.1124/pr.57.4.6 PubMed DOI
Beck A, Gotz V, Qiao S, Weissgerber P, Flockerzi V, Freichel M, et al. Functional characterization of transient receptor potential (TRP) channel C5 in female murine gonadotropes. Endocrinology (2017) 158:887–902.10.1210/en.2016-1810 PubMed DOI
Vergara L, Rojas E, Stojilkovic SS. A novel calcium-activated apamin-insensitive potassium current in pituitary gonadotrophs. Endocrinology (1997) 138:2658–64.10.1210/endo.138.7.5220 PubMed DOI
Van Goor F, Li YX, Stojilkovic SS. Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J Neurosci (2001) 21:5902–15. PubMed PMC
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. J Neurophysiol (2007) 98:131–44.10.1152/jn.00872.2006 PubMed DOI
Chen C, Zhang J, Vincent JD, Israel JM. Sodium and calcium currents in action potentials of rat somatotrophs: their possible functions in growth hormone secretion. Life Sci (1990) 46:983–9.10.1016/0024-3205(90)90021-I PubMed DOI
Zemkova H, Kucka M, Bjelobaba I, Tomic M, Stojilkovic SS. Multiple cholinergic signaling pathways in pituitary gonadotrophs. Endocrinology (2013) 154:421–33.10.1210/en.2012-1554 PubMed DOI PMC
Stojilkovic SS, Kretschmannova K, Tomic M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol (2012) 24:1183–200.10.1111/j.1365-2826.2012.02335.x PubMed DOI PMC
Van Goor F, Zivadinovic D, Martinez-Fuentes AJ, Stojilkovic SS. Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. J Biol Chem (2001) 276:33840–6.10.1074/jbc.M105386200 PubMed DOI
Schlegel W, Winiger BP, Mollard P, Vacher P, Wuarin F, Zahnd GR, et al. Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature (1987) 329:719–21.10.1038/329719a0 PubMed DOI
Bonnefont X, Lacampagne A, Sanchez-Hormigo A, Fino E, Creff A, Mathieu MN, et al. Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad Sci U S A (2005) 102:16880–5.10.1073/pnas.0508202102 PubMed DOI PMC
Budry L, Lafont C, El Yandouzi T, Chauvet N, Conejero G, Drouin J, et al. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci U S A (2011) 108:12515–20.10.1073/pnas.1105929108 PubMed DOI PMC
Chauvet N, El-Yandouzi T, Mathieu MN, Schlernitzauer A, Galibert E, Lafont C, et al. Characterization of adherens junction protein expression and localization in pituitary cell networks. J Endocrinol (2009) 202:375–87.10.1677/JOE-09-0153 PubMed DOI
Connolly CN, Wafford KA. The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans (2004) 32:529–34.10.1042/bst0320529 PubMed DOI
Mayer ML, Olson R, Gouaux E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J Mol Biol (2001) 311:815–36.10.1006/jmbi.2001.4884 PubMed DOI
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev (2011) 63:641–83.10.1124/pr.110.003129 PubMed DOI PMC
Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci (2002) 3:715–27.10.1038/nrn919 PubMed DOI
Mijiddorj T, Kanasaki H, Sukhbaatar U, Oride A, Kyo S. DS1, a delta subunit-containing GABA(A) receptor agonist, increases gonadotropin subunit gene expression in mouse pituitary gonadotrophs. Biol Reprod (2015) 92:45.10.1095/biolreprod.114.123893 PubMed DOI
Virmani MA, Stojilkovic SS, Catt KJ. Stimulation of luteinizing hormone release by gamma-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels. Endocrinology (1990) 126:2499–505.10.1210/endo-126-5-2499 PubMed DOI
Zemkova HW, Bjelobaba I, Tomic M, Zemkova H, Stojilkovic SS. Molecular, pharmacological and functional properties of GABA(A) receptors in anterior pituitary cells. J Physiol (2008) 586:3097–111.10.1113/jphysiol.2008.153148 PubMed DOI PMC
Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol (2003) 147:1–46.10.1007/s10254-003-0005-1 PubMed DOI
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life (2009) 61:407–23.10.1002/iub.170 PubMed DOI
Tomic M, Jobin RM, Vergara LA, Stojilkovic SS. Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J Biol Chem (1996) 271:21200–8.10.1074/jbc.271.35.21200 PubMed DOI
Zemkova H, Balik A, Jiang Y, Kretschmannova K, Stojilkovic SS. Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs. Mol Endocrinol (2006) 20:1423–36.10.1210/me.2005-0508 PubMed DOI
Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS. Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization. Mol Endocrinol (1998) 12:901–13.10.1210/mend.12.7.0129 PubMed DOI
He ML, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS. Release and extracellular metabolism of ATP by ecto-nucleotidase eNTPDase 1-3 in hypothalamic and pituitary cells. Purinergic Signal (2005) 1:135–44.10.1007/s11302-005-6208-y PubMed DOI PMC
Allen-Worthington K, Xie J, Brown JL, Edmunson AM, Dowling A, Navratil AM, et al. The F0F1 ATP synthase complex localizes to membrane rafts in gonadotrope cells. Mol Endocrinol (2016) 30:996–1011.10.1210/me.2015-1324 PubMed DOI PMC
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. Biochim Biophys Acta (2017).10.1016/j.bbamem.2017.03.025 PubMed DOI PMC
Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS. Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology (2011) 152:2342–52.10.1210/en.2010-1216 PubMed DOI PMC
Zemkova H, Kucka M, Li S, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS. Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells. Am J Physiol Endocrinol Metab (2010) 298:E644–51.10.1152/ajpendo.00558.2009 PubMed DOI PMC
He ML, Gonzalez-Iglesias AE, Stojilkovic SS. Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs. J Biol Chem (2003) 278:46270–7.10.1074/jbc.M309005200 PubMed DOI
Stojilkovic SS. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol Metab (2009) 20:460–8.10.1016/j.tem.2009.05.005 PubMed DOI PMC
Li S, Tomic M, Stojilkovic SS. Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels. Gen Comp Endocrinol (2011) 174:202–10.10.1016/j.ygcen.2011.08.019 PubMed DOI PMC
Putney JW. Capacitative calcium entry: from concept to molecules. Immunol Rev (2009) 231:10–22.10.1111/j.1600-065X.2009.00810.x PubMed DOI
Rawlings SR, Demaurex N, Schlegel W. Pituitary adenylate cyclase-activating polypeptide increases [Ca2]i in rat gonadotrophs through an inositol trisphosphate-dependent mechanism. J Biol Chem (1994) 269:5680–6. PubMed
Stojilkovic SS, Merelli F, Iida T, Krsmanovic LZ, Catt KJ. Endothelin stimulation of cytosolic calcium and gonadotropin secretion in anterior pituitary cells. Science (1990) 248:1663–6.10.1126/science.2163546 PubMed DOI
Evans JJ, Forrest-Owen W, McArdle CA. Oxytocin receptor-mediated activation of phosphoinositidase C and elevation of cytosolic calcium in the gonadotrope-derived alphaT3-1 cell line. Endocrinology (1997) 138:2049–55.10.1210/endo.138.5.5138 PubMed DOI
Thomas P, Mellon PL, Turgeon J, Waring DW. The L beta T2 clonal gonadotrope: a model for single cell studies of endocrine cell secretion. Endocrinology (1996) 137:2979–89.10.1210/endo.137.7.8770922 PubMed DOI
Naidich M, Shterntal B, Furman R, Pawson AJ, Jabbour HN, Morgan K, et al. Elucidation of mechanisms of the reciprocal cross talk between gonadotropin-releasing hormone and prostaglandin receptors. Endocrinology (2010) 151:2700–12.10.1210/en.2009-1335 PubMed DOI
Strandabo RA, Hodne K, Ager-Wick E, Sand O, Weltzien FA, Haug TM. Signal transduction involved in GnRH2-stimulation of identified LH-producing gonadotropes from lhb-GFP transgenic medaka (Oryzias latipes). Mol Cell Endocrinol (2013) 372:128–39.10.1016/j.mce.2013.03.022 PubMed DOI
Tomic M, Dufau ML, Catt KJ, Stojilkovic SS. Calcium signaling in single rat Leydig cells. Endocrinology (1995) 136:3422–9.10.1210/endo.136.8.7628378 PubMed DOI
Tomic M, Cesnjaj M, Catt KJ, Stojilkovic SS. Developmental and physiological aspects of Ca2+ signaling in agonist-stimulated pituitary gonadotrophs. Endocrinology (1994) 135:1762–71.10.1210/endo.135.5.7956899 PubMed DOI
Stojilkovic SS, Torsello A, Iida T, Rojas E, Catt KJ. Calcium signaling and secretory responses in agonist-stimulated pituitary gonadotrophs. J Steroid Biochem Mol Biol (1992) 41:453–67.10.1016/0960-0760(92)90371-O PubMed DOI
Vanecek J, Klein DC. Sodium-dependent effects of melatonin on membrane potential of neonatal rat pituitary cells. Endocrinology (1992) 131:939–46.10.1210/endo.131.2.1322288 PubMed DOI
Vanecek J, Klein DC. Melatonin inhibits gonadotropin-releasing hormone-induced elevation of intracellular Ca2+ in neonatal rat pituitary cells. Endocrinology (1992) 130:701–7.10.1210/en.130.2.701 PubMed DOI
Zemkova H, Vanecek J. Inhibitory effect of melatonin on gonadotropin-releasing hormone-induced Ca2+ oscillations in pituitary cells of newborn rats. Neuroendocrinology (1997) 65:276–83.10.1159/000127185 PubMed DOI
Zemkova H, Vanecek J. Differences in gonadotropin-releasing hormone-induced calcium signaling between melatonin-sensitive and melatonin-insensitive neonatal rat gonadotrophs. Endocrinology (2000) 141:1017–26.10.1210/endo.141.3.7351 PubMed DOI
Kukuljan M, Vergara L, Stojilkovic SS. Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca2+]i oscillations by calcium entry in pituitary gonadotrophs. Biophys J (1997) 72:698–707.10.1016/S0006-3495(97)78706-X PubMed DOI PMC
Kukuljan M, Rojas E, Catt KJ, Stojilkovic SS. Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem (1994) 269:4860–5. PubMed
Tse A, Lee AK. Arginine vasopressin triggers intracellular calcium release, a calcium-activated potassium current and exocytosis in identified rat corticotropes. Endocrinology (1998) 139:2246–52.10.1210/endo.139.5.5999 PubMed DOI
Dang AK, Murtazina DA, Magee C, Navratil AM, Clay CM, Amberg GC. GnRH evokes localized subplasmalemmal calcium signaling in gonadotropes. Mol Endocrinol (2014) 28:2049–59.10.1210/me.2014-1208 PubMed DOI PMC
Edwards BS, Dang AK, Murtazina DA, Dozier MG, Whitesell JD, Khan SA, et al. Dynamin is required for GnRH signaling to L-type calcium channels and activation of ERK. Endocrinology (2016) 157:831–43.10.1210/en.2015-1575 PubMed DOI PMC
Stojilkovic SS, Kukuljan M, Tomic M, Rojas E, Catt KJ. Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs. J Biol Chem (1993) 268:7713–20. PubMed
Vergara LA, Stojilkovic SS, Rojas E. GnRH-induced cytosolic calcium oscillations in pituitary gonadotrophs: phase resetting by membrane depolarization. Biophys J (1995) 69:1606–14.10.1016/S0006-3495(95)80033-0 PubMed DOI PMC
Stojilkovic SS, Tomic M, Kukuljan M, Catt KJ. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator. Mol Pharmacol (1994) 45:1013–21. PubMed
Fauquier T, Guerineau NC, McKinney RA, Bauer K, Mollard P. Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci U S A (2001) 98:8891–6.10.1073/pnas.151339598 PubMed DOI PMC
Yamamoto T, Hossain MZ, Hertzberg EL, Uemura H, Murphy LJ, Nagy JI. Connexin43 in rat pituitary: localization at pituicyte and stellate cell gap junctions and within gonadotrophs. Histochemistry (1993) 100:53–64.10.1007/BF00268878 PubMed DOI
Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol (2007) 94:120–43.10.1016/j.pbiomolbio.2007.03.011 PubMed DOI PMC
Cruciani V, Mikalsen SO. The vertebrate connexin family. Cell Mol Life Sci (2006) 63:1125–40.10.1007/s00018-005-5571-8 PubMed DOI PMC
Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary