Influence of the O-phosphorylation of serine, threonine and tyrosine in proteins on the amidic ¹⁵N chemical shielding anisotropy tensors
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- anizotropie MeSH
- fosfáty chemie MeSH
- fosforylace MeSH
- izotopy dusíku chemie MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- peptidy chemie MeSH
- proteiny chemie MeSH
- rozpouštědla chemie MeSH
- serin chemie MeSH
- threonin chemie MeSH
- tyrosin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- izotopy dusíku MeSH
- peptidy MeSH
- proteiny MeSH
- rozpouštědla MeSH
- serin MeSH
- threonin MeSH
- tyrosin MeSH
Density functional theory was employed to study the influence of O-phosphorylation of serine, threonine, and tyrosine on the amidic (15)N chemical shielding anisotropy (CSA) tensor in the context of the complex chemical environments of protein structures. Our results indicate that the amidic (15)N CSA tensor has sensitive responses to the introduction of the phosphate group and the phosphorylation-promoted rearrangement of solvent molecules and hydrogen bonding networks in the vicinity of the phosphorylated site. Yet, the calculated (15)N CSA tensors in phosphorylated model peptides were in range of values experimentally observed for non-phosphorylated proteins. The extent of the phosphorylation induced changes suggests that the amidic (15)N CSA tensor in phosphorylated proteins could be reasonably well approximated with averaged CSA tensor values experimentally determined for non-phosphorylated amino acids in practical NMR applications, where chemical surrounding of the phosphorylated site is not known a priori in majority of cases. Our calculations provide estimates of relative errors to be associated with the averaged CSA tensor values in interpretations of NMR data from phosphorylated proteins.
Zobrazit více v PubMed
J Am Chem Soc. 2006 Jun 21;128(24):7855-70 PubMed
J Phys Chem B. 2012 Jun 21;116(24):7181-9 PubMed
J Biomol NMR. 2006 Aug;35(4):249-59 PubMed
J Am Chem Soc. 2001 Feb 7;123(5):914-22 PubMed
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71 PubMed
Nucleic Acids Res. 2000 Jan 1;28(1):235-42 PubMed
Biophys J. 2004 Mar;86(3):1610-7 PubMed
Nat Struct Mol Biol. 2012 Aug;19(8):819-23 PubMed
Prog Nucl Magn Reson Spectrosc. 2010 Aug;57(2):181-228 PubMed
Magn Reson Chem. 2006 Jul;44 Spec No:S158-67 PubMed
J Magn Reson. 2003 Jul;163(1):163-73 PubMed
J Biomol NMR. 2008 Jun;41(2):77-88 PubMed
Nat Struct Mol Biol. 2007 Aug;14(8):738-45 PubMed
J Phys Chem B. 2009 Apr 16;113(15):5273-81 PubMed
J Am Chem Soc. 2010 Dec 1;132(47):17004-14 PubMed
J Biomol NMR. 1999 Mar;13(3):289-302 PubMed
Science. 2001 Mar 23;291(5512):2429-33 PubMed
J Biomol NMR. 2011 Nov;51(3):303-12 PubMed
J Biomol Struct Dyn. 2010 Feb;27(4):561-72 PubMed
J Biomol NMR. 2005 Nov;33(3):153-61 PubMed
J Biomol NMR. 2009 Aug;44(4):213-23 PubMed
J Am Chem Soc. 2010 Mar 31;132(12):4295-309 PubMed
J Am Chem Soc. 2005 Dec 7;127(48):17079-89 PubMed
Science. 1993 Jun 4;260(5113):1491-6 PubMed
J Phys Chem B. 2004 Oct 21;108(42):16577-16585 PubMed
Trends Biochem Sci. 2005 Jun;30(6):286-90 PubMed
J Am Chem Soc. 2010 Oct 27;132(42):14704-5 PubMed
Chem Rev. 2001 Aug;101(8):2209-42 PubMed
J Am Chem Soc. 2005 Aug 31;127(34):11946-7 PubMed
J Comput Chem. 2002 Mar;23(4):492-7 PubMed
Chem Rev. 1999 Jan 13;99(1):293-352 PubMed
J Biomol NMR. 1999 Feb;13(2):139-47 PubMed
J Magn Reson. 2003 Sep;164(1):171-6 PubMed
J Am Chem Soc. 2006 Mar 22;128(11):3575-83 PubMed
Biochemistry. 2002 Jan 8;41(1):1-7 PubMed
J Biomol NMR. 1998 Jul;12(1):1-23 PubMed
Methods Enzymol. 2001;339:109-26 PubMed
Magn Reson Chem. 2008 Jun;46(6):582-98 PubMed
Trends Biochem Sci. 2000 Dec;25(12):596-601 PubMed
J Chem Inf Model. 2007 May-Jun;47(3):1045-52 PubMed
Biochemistry. 1989 Nov 14;28(23):8972-9 PubMed
J Am Chem Soc. 2005 Jun 29;127(25):9030-5 PubMed
Biopolymers. 2002 Dec 15;65(6):408-23 PubMed
J Biomol NMR. 2009 Nov;45(3):245-53 PubMed
J Chem Theory Comput. 2008 May;4(5):719-27 PubMed
Genome Biol. 2007;8(5):R90 PubMed
Biochemistry. 1992 Sep 15;31(36):8571-86 PubMed
J Biomol NMR. 2007 Jul;38(3):255-66 PubMed
Cell. 2009 Dec 11;139(6):1109-18 PubMed
Biochemistry. 2005 Mar 22;44(11):4386-96 PubMed
J Phys Chem B. 2008 Feb 14;112(6):1796-805 PubMed
J Phys Chem B. 2006 Jun 8;110(22):10926-36 PubMed
J Am Chem Soc. 2007 May 2;129(17):5318-9 PubMed
J Biomol NMR. 2007 Aug;38(4):289-302 PubMed
J Am Chem Soc. 2005 Feb 16;127(6):1995-2005 PubMed
Trends Biochem Sci. 1993 May;18(5):172-7 PubMed