Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Rumen microbiology MeSH
- Bacterial Load MeSH
- Diet methods MeSH
- DNA, Bacterial chemistry genetics MeSH
- Phylogeny MeSH
- Gram-Positive Bacteria classification genetics isolation & purification metabolism MeSH
- Goats MeSH
- Animal Feed * MeSH
- Molecular Sequence Data MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.
See more in PubMed
Appl Microbiol. 1975 Sep;30(3):404-12 PubMed
Int J Syst Bacteriol. 1994 Oct;44(4):812-26 PubMed
Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):201-209 PubMed
Folia Microbiol (Praha). 2003;48(3):339-45 PubMed
Can J Microbiol. 1993 Jan;39(1):101-8 PubMed
BMC Bioinformatics. 2007 Mar 13;8:89 PubMed
Br J Nutr. 1989 Sep;62(2):509-20 PubMed
BMC Bioinformatics. 2006 Oct 10;7:439 PubMed
Appl Environ Microbiol. 1982 Aug;44(2):402-12 PubMed
Appl Microbiol. 1966 Sep;14(5):794-801 PubMed
Reprod Nutr Dev. 2004 Sep-Oct;44(5):397-405 PubMed
Appl Environ Microbiol. 1988 Mar;54(3):772-6 PubMed
Appl Environ Microbiol. 1985 Jul;50(1):144-51 PubMed
Lett Appl Microbiol. 1996 Oct;23(4):218-22 PubMed
J Gen Microbiol. 1983 Jan;129(1):213-23 PubMed
J Anim Sci. 1974 Mar;38(3):559-64 PubMed
J Bacteriol. 1966 May;91(5):1724-9 PubMed
Folia Microbiol (Praha). 2001;46(1):94-6 PubMed
Cornell Vet. 1952 Oct;42(4):423-49 PubMed
Appl Environ Microbiol. 1999 Aug;65(8):3660-7 PubMed
Appl Environ Microbiol. 1976 Feb;31(2):262-7 PubMed
Folia Microbiol (Praha). 2006;51(4):263-7 PubMed
Appl Environ Microbiol. 1989 Nov;55(11):2789-92 PubMed
Antonie Van Leeuwenhoek. 2004 Oct;86(3):263-81 PubMed
J Bacteriol. 1969 Jul;99(1):189-96 PubMed
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 PubMed
Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans
GENBANK
JN619348, JQ673415