Is Pseudobutyrivibrio xylanivorans strain Mz5T suitable as a probiotic? An in vitro study
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12879743
DOI
10.1007/bf02931363
Knihovny.cz E-zdroje
- MeSH
- bachor metabolismus mikrobiologie MeSH
- bakteriální adheze fyziologie MeSH
- bakteriociny farmakologie MeSH
- butyráty metabolismus MeSH
- Caco-2 buňky MeSH
- drůbež MeSH
- Escherichia coli metabolismus MeSH
- gramnegativní anaerobní tyčinky rovné, zakřivené a spirálovité enzymologie metabolismus MeSH
- kyselina linolová MeSH
- kyselina mléčná metabolismus MeSH
- lidé MeSH
- maso mikrobiologie MeSH
- probiotika farmakologie MeSH
- Salmonella metabolismus MeSH
- skot MeSH
- techniky in vitro MeSH
- xylosidasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny MeSH
- butyráty MeSH
- kyselina linolová MeSH
- kyselina mléčná MeSH
- xylosidasy MeSH
Rumen bacterium Pseudobutyrivibrio xylanivorans strain Mz5T possessed a potent xylanolytic enzyme system consisting of at least 7 different xylan hydrolases with molar mass 27-145 kDa. Three of them were successfully isolated in active native form. This strain produced butyrate and lactate on different saccharides. cis-9, trans-11-Conjugated linoleic acid was also detected in the culture medium. Bacteriocin-like inhibitory substances of Mz5T were active against some strains of rumen bacteria and against selected Salmonella and E. coli isolates from poultry meat. The strain Mz5T retained viability and xylanolytic activity also under not fully anaerobic conditions; its cells attached to the Caco-2 cells so that its successful association with gut epithelial cells may be expected. These in vitro results confirmed several probiotic traits of the isolate Mz5T and justified further in vivo experiments to test its ability to improve animal health and performance.
Zobrazit více v PubMed
Mol Gen Genet. 1991 Aug;228(1-2):55-61 PubMed
Int J Food Microbiol. 1998 May 5;41(1):45-51 PubMed
Physiol Rev. 2001 Jul;81(3):1031-64 PubMed
Anal Biochem. 1977 Jul;81(1):21-7 PubMed
Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):201-209 PubMed
J Bacteriol. 1990 Aug;172(8):4247-54 PubMed
Int J Colorectal Dis. 1999 Nov;14(4-5):201-11 PubMed
Folia Microbiol (Praha). 2001;46(1):63-5 PubMed
Anal Biochem. 1983 Jun;131(2):333-6 PubMed
Lett Appl Microbiol. 1990 Jul;11(1):18-21 PubMed
Biochimie. 1988 Mar;70(3):337-49 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Appl Environ Microbiol. 1997 Feb;63(2):394-402 PubMed
Vet Q. 1998;20 Suppl 3:S52-9 PubMed
Lett Appl Microbiol. 1995 Sep;21(3):146-8 PubMed
Folia Microbiol (Praha). 2001;46(1):94-6 PubMed
Trends Microbiol. 1999 Mar;7(3):129-33 PubMed
Biotechniques. 2000 Mar;28(3):426-8, 430, 432 PubMed
J Bacteriol. 2002 Aug;184(15):4124-33 PubMed
Folia Microbiol (Praha). 2001;46(1):61-2 PubMed
Toxicol Sci. 1999 Dec;52(2 Suppl):107-10 PubMed
Folia Microbiol (Praha). 2001;46(1):45-8 PubMed
FEMS Microbiol Lett. 1991 Nov 15;68(2):197-203 PubMed
J Biol Chem. 1966 Mar 25;241(6):1350-4 PubMed
Diet-dependent shifts in ruminal butyrate-producing bacteria
Purification and characterization of xylanases from Aspergillus giganteus