Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23294113
PubMed Central
PMC3653370
DOI
10.1089/scd.2012.0624
Knihovny.cz E-resources
- MeSH
- Biomarkers metabolism MeSH
- Cell Differentiation drug effects MeSH
- Time Factors MeSH
- Embryonic Stem Cells cytology drug effects metabolism MeSH
- Glutamates pharmacology MeSH
- Intracellular Space drug effects metabolism MeSH
- Microscopy, Confocal MeSH
- Humans MeSH
- Neural Stem Cells cytology drug effects metabolism MeSH
- Cell Count MeSH
- Receptors, Purinergic metabolism MeSH
- Calcium metabolism MeSH
- Calcium Signaling * drug effects MeSH
- Calcium Channels metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Glutamates MeSH
- Receptors, Purinergic MeSH
- Calcium MeSH
- Calcium Channels MeSH
Human embryonic stem cell-derived neural precursors (hESC NPs) are considered to be a promising tool for cell-based therapy in central nervous system injuries and neurodegenerative diseases. The Ca(2+) ion is an important intracellular messenger essential for the regulation of various cellular functions. We investigated the role and physiology of Ca(2+) signaling to characterize the functional properties of CCTL14 hESC NPs during long-term maintenance in culture (in vitro). We analyzed changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]i) evoked by high K(+), adenosine-5'-triphosphate (ATP), glutamate, γ-aminobutyric acid (GABA), and caffeine in correlation with the expression of various neuronal markers in different passages (P6 through P10) during the course of hESC differentiation. We found that only differentiated NPs from P7 exhibited significant and specific [Ca(2+)]i responses to various stimuli. About 31% of neuronal-like P7 NPs exhibited spontaneous [Ca(2+)]i oscillations. Pharmacological and immunocytochemical assays revealed that P7 NPs express L- and P/Q-type Ca(2+) channels, P2X2, P2X3, P2X7, and P2Y purinoreceptors, glutamate receptors, and ryanodine (RyR1 and RyR3) receptors. The ATP- and glutamate-induced [Ca(2+)]i responses were concentration-dependent. Higher glutamate concentrations (over 100 μM) caused cell death. Responses to ATP were observed in the presence or in the absence of extracellular Ca(2+). These results emphasize the notion that with time in culture, these cells attain a transient period of operative Ca(2+) signaling that is predictive of their ability to act as stem elements.
See more in PubMed
Thomson JA. Itskovitz-Eldor J. Shapiro SS. Waknitz MA. Swiergiel JJ. Marshall VS. Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. PubMed
Zhang SC. Wernig M. Duncan ID. Brustle O. Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19:1129–1133. PubMed
Reubinoff BE. Itsykson P. Turetsky T. Pera MF. Reinhartz E. Itzik A. Ben-Hur T. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19:1134–1140. PubMed
Schulz TC. Noggle SA. Palmarini GM. Weiler DA. Lyons IG. Pensa KA. Meedeniya AC. Davidson BP. Lambert NA. Condie BG. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells. 2004;22:1218–1238. PubMed
Li XJ. Du ZW. Zarnowska ED. Pankratz M. Hansen LO. Pearce RA. Zhang SC. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005;23:215–221. PubMed
De Smedt H. Verkhratsky A. Muallem S. Ca(2+) signaling mechanisms of cell survival and cell death: an introduction. Cell Calcium. 2011;50:207–210. PubMed
Dayanithi G. Forostyak O. Ueta Y. Verkhratsky A. Toescu EC. Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium. 2012;51:293–299. PubMed
Toescu EC. Dayanithi G. Neuroendocrine signalling: natural variations on a Ca(2+) theme. Cell Calcium. 2012;51:207–211. PubMed
Berridge MJ. Lipp P. Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21. PubMed
Carafoli E. Santella L. Branca D. Brini M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36:107–260. PubMed
Munaron L. Antoniotti S. Lovisolo D. Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med. 2004;8:161–168. PubMed PMC
Orrenius S. Zhivotovsky B. Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–565. PubMed
Majumder P. Trujillo CA. Lopes CG. Resende RR. Gomes KN. Yuahasi KK. Britto LR. Ulrich H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal. 2007;3:317–331. PubMed PMC
North RA. Verkhratsky A. Purinergic transmission in the central nervous system. Pflugers Arch. 2006;452:479–485. PubMed
Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21:13–26. PubMed
Spitzer NC. Electrical activity in early neuronal development. Nature. 2006;444:707–712. PubMed
LoTurco JJ. Owens DF. Heath MJ. Davis MB. Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15:1287–1298. PubMed
Haydar TF. Wang F. Schwartz ML. Rakic P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci. 2000;20:5764–5774. PubMed PMC
Kozubenko N. Turnovcova K. Kapcalova M. Butenko O. Anderova M. Rusnakova V. Kubista M. Hampl A. Jendelova P. Sykova E. Analysis of in vitro and in vivo characteristics of human embryonic stem cell-derived neural precursors. Cell Transplant. 2010;19:471–486. PubMed
Rowe EW. Jeftinija DM. Jeftinija K. Jeftinija S. Development of functional neurons from postnatal stem cells in vitro. Stem Cells. 2005;23:1044–1049. PubMed
Arnhold S. Andressen C. Angelov DN. Vajna R. Volsen SG. Hescheler J. Addicks K. Embryonic stem-cell derived neurones express a maturation dependent pattern of voltage-gated calcium channels and calcium-binding proteins. Int J Dev Neurosci. 2000;18:201–212. PubMed
Malmersjo S. Liste I. Dyachok O. Tengholm A. Arenas E. Uhlen P. Ca2+ and cAMP signaling in human embryonic stem cell-derived dopamine neurons. Stem Cells Dev. 2010;19:1355–1364. PubMed
Young A. Machacek DW. Dhara SK. Macleish PR. Benveniste M. Dodla MC. Sturkie CD. Stice SL. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience. 2011;192:793–805. PubMed PMC
Zhang L. Blackman BE. Schonemann MD. Zogovic-Kapsalis T. Pan X. Tagliaferri M. Harris HA. Cohen I. Pera RA, et al. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons. PLoS One. 2010;5:e11791. PubMed PMC
Weick JP. Austin Johnson M. Zhang SC. Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells. 2009;27:2906–2916. PubMed PMC
Komori Y. Tanaka M. Kuba M. Ishii M. Abe M. Kitamura N. Verkhratsky A. Shibuya I. Dayanithi G. Ca(2+) homeostasis, Ca(2+) signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell Calcium. 2010;48:324–332. PubMed
Dayanithi G. Widmer H. Richard P. Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol. 1996;490(Pt 3):713–727. PubMed PMC
Viero C. Mechaly I. Aptel H. Puech S. Valmier J. Bancel F. Dayanithi G. Rapid inhibition of Ca2+ influx by neurosteroids in murine embryonic sensory neurones. Cell Calcium. 2006;40:383–391. PubMed
Dayanithi G. Chen-Kuo-Chang M. Viero C. Hamel C. Muller A. Lenaers G. Characterization of Ca2+ signalling in postnatal mouse retinal ganglion cells: involvement of OPA1 in Ca2+ clearance. Ophthalmic Genet. 2010;31:53–65. PubMed
Dayanithi G. Sabatier N. Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol. 2000;85 Spec No:75S–84S. PubMed
Viero C. Dayanithi G. Neurosteroids are excitatory in supraoptic neurons but inhibitory in the peripheral nervous system: it is all about oxytocin and progesterone receptors. Prog Brain Res. 2008;170:177–192. PubMed
Lambert RC. Dayanithi G. Moos FC. Richard P. A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol. 1994;478(Pt 2):275–287. PubMed PMC
Jamen F. Alonso G. Shibuya I. Widmer H. Vacher CM. Calas A. Bockaert J. Brabet P. Dayanithi G. Impaired somatodendritic responses to pituitary adenylate cyclase-activating polypeptide (PACAP) of supraoptic neurones in PACAP type I-receptor deficient mice. J Neuroendocrinol. 2003;15:871–881. PubMed
Widmer H. Ludwig M. Bancel F. Leng G. Dayanithi G. Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. J Physiol. 2003;548:233–244. PubMed PMC
Dayanithi G. Mechaly I. Viero C. Aptel H. Alphandery S. Puech S. Bancel F. Valmier J. Intracellular Ca2+ regulation in rat motoneurons during development. Cell Calcium. 2006;39:237–246. PubMed
Sabatier N. Richard P. Dayanithi G. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus. J Physiol. 1997;503(Pt 2):253–268. PubMed PMC
Tsien RW. Lipscombe D. Madison DV. Bley KR. Fox AP. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988;11:431–438. PubMed
Deisseroth K. Singla S. Toda H. Monje M. Palmer TD. Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42:535–552. PubMed
Webb SE. Moreau M. Leclerc C. Miller AL. Calcium transients and neural induction in vertebrates. Cell Calcium. 2005;37:375–385. PubMed
Yu HM. Wen J. Wang R. Shen WH. Duan S. Yang HT. Critical role of type 2 ryanodine receptor in mediating activity-dependent neurogenesis from embryonic stem cells. Cell Calcium. 2008;43:417–431. PubMed
Pouille F. Cavelier P. Desplantez T. Beekenkamp H. Craig PJ. Beattie RE. Volsen SG. Bossu JL. Dendro-somatic distribution of calcium-mediated electrogenesis in purkinje cells from rat cerebellar slice cultures. J Physiol. 2000;527(Pt 2):265–282. PubMed PMC
Khosravani H. Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev. 2006;86:941–966. PubMed
Lemos JR. Ortiz-Miranda SI. Cuadra AE. Velazquez-Marrero C. Custer EE. Dad T. Dayanithi G. Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium. 2012;51:284–292. PubMed PMC
Abbracchio MP. Burnstock G. Verkhratsky A. Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29. PubMed
Burnstock G. Verkhratsky A. Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis. 2010;1:e9. PubMed PMC
Zimmermann H. Purinergic signaling in neural development. Semin Cell Dev Biol. 2011;22:194–204. PubMed
Ralevic V. Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–492. PubMed
Allodi I. Guzman-Lenis MS. Hernandez J. Navarro X. Udina E. In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. J Neurosci Methods. 2011;198:53–61. PubMed
Khaira SK. Pouton CW. Haynes JM. P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. Br J Pharmacol. 2009;158:1922–1931. PubMed PMC
Rose CR. Konnerth A. Stores not just for storage. intracellular calcium release and synaptic plasticity. Neuron. 2001;31:519–522. PubMed
Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol. 2001;65:309–338. PubMed
Rizzuto R. Intracellular Ca(2+) pools in neuronal signalling. Curr Opin Neurobiol. 2001;11:306–311. PubMed
Kettenmann H. Hanisch UK. Noda M. Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553. PubMed
Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–249. PubMed
Bootman MD. Berridge MJ. Roderick HL. Calcium signalling: more messengers, more channels, more complexity. Curr Biol. 2002;12:R563–R565. PubMed
Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85:201–279. PubMed
Vyleta NP. Smith SM. Fast inhibition of glutamate-activated currents by caffeine. PLoS One. 2008;3:e3155. PubMed PMC
Sedan O. Dolnikov K. Zeevi-Levin N. Leibovich N. Amit M. Itskovitz-Eldor J. Binah O. 1,4,5-Inositol trisphosphate-operated intracellular Ca(2+) stores and angiotensin-II/endothelin-1 signaling pathway are functional in human embryonic stem cell-derived cardiomyocytes. Stem Cells. 2008;26:3130–3138. PubMed
Satin J. Itzhaki I. Rapoport S. Schroder EA. Izu L. Arbel G. Beyar R. Balke CW. Schiller J. Gepstein L. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells. 2008;26:1961–1972. PubMed
Spitzer NC. Lautermilch NJ. Smith RD. Gomez TM. Coding of neuronal differentiation by calcium transients. Bioessays. 2000;22:811–817. PubMed
Spitzer NC. Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. Trends Neurosci. 1994;17:115–118. PubMed
Desarmenien MG. Spitzer NC. Role of calcium and protein kinase C in development of the delayed rectifier potassium current in Xenopus spinal neurons. Neuron. 1991;7:797–805. PubMed
Spitzer NC. Debaca RC. Allen KA. Holliday J. Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons. J Comp Neurol. 1993;337:168–175. PubMed
Gu X. Olson EC. Spitzer NC. Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci. 1994;14:6325–6335. PubMed PMC
Ben-Ari Y. Gaiarsa JL. Tyzio R. Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87:1215–1284. PubMed
Wang J. Reichling DB. Kyrozis A. MacDermott AB. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci. 1994;6:1275–1280. PubMed
Obrietan K. van den Pol AN. GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing. J Neurosci. 1995;15:5065–5077. PubMed PMC
Maric D. Maric I. Wen X. Fritschy JM. Sieghart W. Barker JL. Serafini R. GABAA receptor subunit composition and functional properties of Cl- channels with differential sensitivity to zolpidem in embryonic rat hippocampal cells. J Neurosci. 1999;19:4921–4937. PubMed PMC
Schlett K. Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem. 2006;6:949–960. PubMed
Melchiorri D. Cappuccio I. Ciceroni C. Spinsanti P. Mosillo P. Sarichelou I. Sale P. Nicoletti F. Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology. 2007;53:473–480. PubMed
Piper DR. Mujtaba T. Rao MS. Lucero MT. Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J Neurophysiol. 2000;84:534–548. PubMed
Draberova E. Del Valle L. Gordon J. Markova V. Smejkalova B. Bertrand L. de Chadarevian JP. Agamanolis DP. Legido A, et al. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol. 2008;67:341–354. PubMed
Hol EM. Roelofs RF. Moraal E. Sonnemans MA. Sluijs JA. Proper EA. de Graan PN. Fischer DF. van Leeuwen FW. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry. 2003;8:786–796. PubMed
Casper KB. McCarthy KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci. 2006;31:676–684. PubMed
Wernig M. Zhao JP. Pruszak J. Hedlund E. Fu D. Soldner F. Broccoli V. Constantine-Paton M. Isacson O. Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A. 2008;105:5856–5861. PubMed PMC
Dimos JT. Rodolfa KT. Niakan KK. Weisenthal LM. Mitsumoto H. Chung W. Croft GF. Saphier G. Leibel R, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321:1218–1221. PubMed
Yuan SH. Martin J. Elia J. Flippin J. Paramban RI. Hefferan MP. Vidal JG. Mu Y. Killian RL, et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One. 2011;6:e17540. PubMed PMC
Forostyak O. Kozubenko N. Bernascone S. Sykova E. Dayanithi G. Physiology of calcium signalling in human embryonic stem cell-derived neural precursors. 7th Federation of European Neuroscience Scocieties. Forum of European Neuroscience. 2010 FENS Abstract, 5: 041.8.
Forostyak O. Romanyuk N. Sykova E. Dayanithi G. Physiology of Ca2+ signalling in human embryonic stem cell-derived neural precursors. GLIA. 2011;59(Suppl:1):S119–S119. Pages. PubMed PMC
Neuroprotective Potential of Cell-Based Therapies in ALS: From Bench to Bedside
Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors