Getting it right before transplantation: example of a stem cell model with regenerative potential for the CNS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25364743
PubMed Central
PMC4207039
DOI
10.3389/fcell.2014.00036
Knihovny.cz E-zdroje
- Klíčová slova
- calcium signaling, human embryonic stem cell, immortalized stem cell lines, ion channels, neural precursors, neurodegenerative diseases, spinal cord,
- Publikační typ
- časopisecké články MeSH
The burden of neurodegenerative disorders in an aging population has become a challenge for the modern world. While the biomarkers available and the methods of diagnosis have improved to detect the onset of these diseases at early stages, the question of adapted and efficient therapies is still a major issue. The prospect of replacing the loss of functional neural cells remains an attractive but still audacious approach. A huge progress has been made in the generation of neurons derived from human stem cell lines and transplantation assays are tested in animals for a wide range of pathologies of the central nervous system. Here we take one step back and examine neuronal differentiation and the characterization of neural progenitors derived from human embryonic stem cells. We gather results from our previous studies and present a cell model that was successfully used in functional analyses and engraftment experiments. These neuronal precursors exhibit spontaneous and evoked activity, indicating that their electrophysiological and calcium handling properties are similar to those of matured neurons. Hence this summarized information will serve as a basis to design better stem cell-based therapies to improve neural regeneration.
Zobrazit více v PubMed
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P. W., Beighton G., et al. . (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Int. Stem Cell Initiative. Nat. Biotechnol. 25, 803–816. 10.1038/nbt1318 PubMed DOI
Amemori T., Romanyuk N., Jendelova P., Herynek V., Turnovcova K., Prochazka P., et al. . (2013). Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res. Ther. 4, 68. 10.1186/scrt219 PubMed DOI PMC
Barberi T., Klivenyi P., Calingasan N. Y., Lee H., Kawamata H., Loonam K., et al. . (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207. 10.1038/nbt870 PubMed DOI
Burridge P. W., Anderson D., Priddle H., Barbadillo Muñoz M. D., Chamberlain S., Allegrucci C., et al. . (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25, 929–938. 10.1634/stemcells.2006-0598 PubMed DOI
Chambers S. M., Fasano C. A., Papapetrou E. P., Tomishima M., Sadelain M., Studer L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280. 10.1038/nbt.1529 PubMed DOI PMC
Chen W. W., Blurton-Jones M. (2012). Concise review: can stem cells be used to treat or model Alzheimer's disease? Stem Cells 30, 2612–2618. 10.1002/stem.1240 PubMed DOI PMC
Cocks G., Romanyuk N., Amemori T., Jendelova P., Forostyak O., Jeffries A. R., et al. . (2013). Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res. Ther. 4, 69. 10.1186/scrt220 PubMed DOI PMC
Datta I., Ganapathy K., Tattikota S. M., Bhonde R. (2013). Directed differentiation of human embryonic stem cell-line HUES9 to dopaminergic neurons in a serum-free defined culture niche. Cell Biol. Int. 37, 54–64. 10.1002/cbin.10012 PubMed DOI
Eini R., Dorssers L. C., Looijenga L. H. (2013). Role of stem cell proteins and microRNAs in embryogenesis and germ cell cancer. Int. J. Dev. Biol. 57, 319–332. 10.1387/ijdb.130020re PubMed DOI
Forostyak O., Romanyuk N., Verkhratsky A., Sykova E., Dayanithi G. (2013). Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev. 22, 1506–1521. 10.1089/scd.2012.0624 PubMed DOI PMC
Jonlin E. C. (2014). Differing standards for the NIH Stem Cell Registry and FDA approval render most federally funded hESC lines unsuitable for clinical use. Cell Stem Cell 14, 139–140. 10.1016/j.stem.2013.12.014 PubMed DOI
Kawasaki H., Mizuseki K., Nishikawa S., Kaneko S., Kuwana Y., Nakanishi S., et al. . (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40. 10.1016/S0896-6273(00)00083-0 PubMed DOI
Kim J. H., Auerbach J. M., Rodríguez-Gómez J. A., Velasco I., Gavin D., Lumelsky N., et al. . (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56. 10.1038/nature00900 PubMed DOI
Kim Y. S., Park C. H. (2011). Dopamine neuron generation from human embryonic stem cells. Int. J. Stem Cells 4, 85–87. 10.15283/ijsc.2011.4.2.85 PubMed DOI PMC
Kozubenko N., Turnovcova K., Kapcalova M., Butenko O., Anderova M., Rusnakova V., et al. . (2010). Analysis of in vitro and in vivo characteristics of human embryonic stem cell-derived neural precursors. Cell Transplant. 19, 471–486. 10.3727/096368909X484707 PubMed DOI
Lee S. H., Lumelsky N., Studer L., Auerbach J. M., McKay R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679. 10.1038/76536 PubMed DOI
Li W., Sun W., Zhang Y., Wei W., Ambasudhan R., Xia P., et al. . (2011). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc. Natl. Acad. Sci. U.S.A. 108, 8299–8304. 10.1073/pnas.1014041108 PubMed DOI PMC
Lin S. L., Ying S. Y. (2013). Mechanism and method for generating tumor-free iPS cells using intronic microRNA miR-302 induction. Methods Mol. Biol. 936, 295–312. 10.1007/978-1-62703-083-0_23 PubMed DOI
Louis S. A., Rietze R. L., Deleyrolle L., Wagey R. E., Thomas T. E., Eaves A. C., et al. . (2008). Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26, 988–996. 10.1634/stemcells.2007-0867 PubMed DOI
Marx V. (2014). Cell-line authentication demystified. Nat. Methods 11, 483–488. 10.1038/nmeth.2932 PubMed DOI
Reubinoff B. E., Itsykson P., Turetsky T., Pera M. F., Reinhartz E., Itzik A., et al. . (2001). Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140. 10.1038/nbt1201-1134 PubMed DOI
Schwartz S. D., Hubschman J. P., Heilwell G., Franco-Cardenas V., Pan C. K., Ostrick R. M., et al. . (2012). Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379, 713–720. 10.1016/S0140-6736(12)60028-2 PubMed DOI
Shah M., Allegrucci C. (2013). Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells. Subcell. Biochem. 61, 545–565. 10.1007/978-94-007-4525-4_24 PubMed DOI
Sykova E., Forostyak S. (2013). Stem cells in regenerative medicine. Laser Ther. 22, 87–92. 10.3136/islsm.22.87 PubMed DOI PMC
Vazin T., Chen J., Lee C. T., Amable R., Freed W. J. (2008). Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells 26, 1517–1525. 10.1634/stemcells.2008-0039 PubMed DOI PMC