Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

. 2013 Jan 16 ; 8 () : 1. [epub] 20130116

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23324625

Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

Zobrazit více v PubMed

Templeton AR. The reality and importance of founder speciation in evolution. BioEssays. 2008;30:470–479. doi: 10.1002/bies.20745. PubMed DOI

Mayr E. In: Evolution as a genetic process. 1. Huxley J, editor. London: Allen and Unwin; 1954. Change of the genetic environment and evolution; pp. 157–180.

Flegr J. Elastic, not plastic species: frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms. Biol Direct. 2010;5:2. doi: 10.1186/1745-6150-5-2. PubMed DOI PMC

Costas E, Gonzalez-Gil S, Lopez-Rodas V, Aguilera A. The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae. Helgol Meersunters. 1996;50:117–130. doi: 10.1007/BF02367140. DOI

McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He FL. et al.Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett. 2007;10:995–1015. doi: 10.1111/j.1461-0248.2007.01094.x. PubMed DOI

McGill BJ, Hadly EA, Maurer BA. Community inertia of quaternary small mammal assemblages in North America. Proc Natl Acad Sci U S A. 2005;102:16701–16706. doi: 10.1073/pnas.0504225102. PubMed DOI PMC

Prinzing A, Ozinga WA, Durka W. The relationship between global and regional distribution diminishes among phylogenetically basal species. Evolution. 2004;58:2622–2633. PubMed

Bradshaw WE, Holzapfel CM. Climate change. Evolutionary response to rapid climate change. Science. 2006;312:1477–1478. doi: 10.1126/science.1127000. PubMed DOI

Nussey DH, Postma E, Gienapp P, Visser ME. Selection on heritable phenotypic plasticity in a wild bird population. Science. 2005;310:304–306. doi: 10.1126/science.1117004. PubMed DOI

Flegr J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J Theor Biol. 1997;188:121–126. doi: 10.1006/jtbi.1997.0458. DOI

Kulich T, Flegr J. Positive effects of multiple gene control on the spread of altruism by group selection. J Theor Biol. 2011;284:1–6. doi: 10.1016/j.jtbi.2011.05.017. PubMed DOI

Clarke CMH. Liberations and dispersal of red deer in northern South Island districts. N Z For Sci. 1971;1:194–207.

Lever C. Naturalized Mammals of the World. Essex: Longman; 1985.

Sax DF, Brown JH. The paradox of invasion. Global Ecol Biogeogr. 2000;9:363–371. doi: 10.1046/j.1365-2699.2000.00217.x. DOI

Roman J, Darling JA. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol. 2007;22:454–464. doi: 10.1016/j.tree.2007.07.002. PubMed DOI

Kliber A, Eckert CG. Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution. 2005;59:1900–1913. PubMed

Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett. 2006;9:981–993. doi: 10.1111/j.1461-0248.2006.00950.x. PubMed DOI

Yonekura R, Kawamura K, Uchii K. A peculiar relationship between genetic diversity and adaptability in invasive exotic species: Bluegill sunfish as a model species. Ecol Res. 2007;22:911–919. doi: 10.1007/s11284-007-0357-0. DOI

Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–294. doi: 10.1016/j.tplants.2008.03.004. PubMed DOI

Novak SJ. The role of evolution in the invasion process. Proc Natl Acad Sci U S A. 2007;104:3671–3672. doi: 10.1073/pnas.0700224104. PubMed DOI PMC

Hoffmann AA, Reynolds KT, Nash MA, Weeks AR. A high incidence of parthenogenesis in agricultural pests. Proc R Soc Biol Sci Ser B. 2008;275:2473–2481. doi: 10.1098/rspb.2008.0685. PubMed DOI PMC

Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A. 2007;104:8641–8648. doi: 10.1073/pnas.0700643104. PubMed DOI PMC

Le Rouzic A, Carlborg O. Evolutionary potential of hidden genetic variation. Trends Ecol Evol. 2008;23:33–37. doi: 10.1016/j.tree.2007.09.014. PubMed DOI

Flegr J. Was Lysenko (partly) right? Michurinist biology in the view of modern plant physiology and genetics. Riv Biol/Biol Forum. 2002;95:259–271. PubMed

Peck JR, Yearsley JM, Waxman D. Explaining the geographic distributions of sexual and asexual population. Nature. 1998;391:889–892. doi: 10.1038/36099. DOI

Haag CR, Ebert D. A new hypothesis to explain geographic parthenogenesis. Ann Zool Fenn. 2004;41:539–544.

Williams GC. Sex and evolution. Princeton: Princeton University Press; 1975.

Ricklefs RE. Cladogenesis and morphological diversification in passerine birds. Nature. 2004;430:338–341. doi: 10.1038/nature02700. PubMed DOI

Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science. 2006;314:119–121. doi: 10.1126/science.1129647. PubMed DOI

Woolfit M, Bromham L. Population size and molecular evolution on islands. Proc R Soc Biol Sci Ser B. 2005;272:2277–2282. doi: 10.1098/rspb.2005.3217. PubMed DOI PMC

Gould SJ. The structure of evolutionary theory. Camridge: The Belknap Press of Harvard University Press; 2002.

Benton MJ. Models for the diversification of life. Trends Ecol Evol. 1997;12(12):490–495. doi: 10.1016/S0169-5347(97)84410-2. PubMed DOI

Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fursich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D. et al.Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci U S A. 2001;98:6261–6266. doi: 10.1073/pnas.111144698. PubMed DOI PMC

Sepkoski JJ. A factor analytic description of the phanerozoic marine fossil record. Paleobiology. 1981;7:36–53.

Alroy J, Aberhan M, Bottjer DJ, Foote M, Fursich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W. et al.Phanerozoic trends in the global diversity of marine invertebrates. Science. 2008;321:97–100. doi: 10.1126/science.1156963. PubMed DOI

Heard SB. Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution. 1992;46:1818–1826. doi: 10.2307/2410033. PubMed DOI

Darwin C. On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. London: Murray; 1860. PubMed PMC

Hughes NC. Strength in numbers: high phenotypic variance in early Cambrian trilobites and its evolutionary implications. BioEssays. 2007;29:1081–1084. doi: 10.1002/bies.20674. PubMed DOI

Rasnicyn AP. Collected works in evolutionary biology (Izbrannye trudy po evolucionnoj biologii) Moskva: Tovarisevstvo naucnych izdanii KMK; 2005.

Webster M. A Cambrian peak in morphological variation within trilobite species. Science. 2007;317:499–502. doi: 10.1126/science.1142964. PubMed DOI

Foote M. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology. 1988;14:258–271.

Erwin DH. Disparity: Morphological pattern and developmental context. Palaeontology. 2007;50:57–73. doi: 10.1111/j.1475-4983.2006.00614.x. DOI

Rabosky DL, Lovette IJ. Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution. 2008;62:1866–1875. doi: 10.1111/j.1558-5646.2008.00409.x. PubMed DOI

Phillimore AB, Price TD. Density-dependent cladogenesis in birds. PLoS Biol. 2008;6:483–489. PubMed PMC

Jablonski D. Survival without recovery after mass extinctions. Proc Natl Acad Sci U S A. 2002;99:8139–8144. doi: 10.1073/pnas.102163299. PubMed DOI PMC

Gould SJ. Wonderful Life. New York: W.W. Norton&Company; 1989.

Bowring SA, Grotzinger JP, Isachsen CE, Knoll AH, Pelechaty SM, Kolosov P. Calibrating rates of early cambrian evolution. Science. 1993;261:1293–1298. doi: 10.1126/science.11539488. PubMed DOI

Davison JA. Is evolution finished? Riv Biol/Biol Forum. 2004;97:111–116. PubMed

Conway-Morris S. Nipping the Cambrian "explosion" in the bud? BioEssays. 2000;22:1053–1056. doi: 10.1002/1521-1878(200012)22:12<1053::AID-BIES2>3.0.CO;2-2. PubMed DOI

Conway-Morris S. Darwin's dilemma: the realities of the Cambrian 'explosion'. Philos Trans R Soc B Biol Sci. 2006;361:1069–1083. doi: 10.1098/rstb.2006.1846. PubMed DOI PMC

Knoll AH, Carroll SB. Early animal evolution: Emerging views from comparative biology and geology. Science. 1999;284(5423):2129–2137. doi: 10.1126/science.284.5423.2129. PubMed DOI

Lieberman BS. A test of whether rates of speciation were unusually high during the Cambrian radiation. Proc R Soc Biol Sci Ser B. 2001;268:1707–1714. doi: 10.1098/rspb.2001.1712. PubMed DOI PMC

Marshall CR. Explaining the Cambrian "explosion" of animals. Annu Rev Earth Planet Sci. 2006;34:355–384. doi: 10.1146/annurev.earth.33.031504.103001. DOI

Briggs DEG, Fortey RA. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology. 2005;31:94–112. doi: 10.1666/0094-8373(2005)031[0094:WSSSGA]2.0.CO;2. DOI

Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A. 2004;101:15386–15391. doi: 10.1073/pnas.0403984101. PubMed DOI PMC

Cooper A, Fortey R. Evolutionary explosions and the phylogenetic fuse. Trends Ecol Evol. 1998;13(4):151–156. doi: 10.1016/S0169-5347(97)01277-9. PubMed DOI

Eldredge N. Allopatric model and phylogeny in paleozoic invertebrates. Evolution. 1971;25:156–167. doi: 10.2307/2406508. PubMed DOI

Eldredge N, Gould SJ. In: Punctuated equilibria: an alternative to phyletic gradualism. Schopf TJM, editor. San Francisco: Freeman, Cooper & Co; 1972. Models in Paleontology; pp. 82–115.

Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W. The dynamics of evolutionary stasis. Paleobiology. 2005;31:133–145. doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2. DOI

Penny D. 20 Points on the structure and testability of Darwin’s theory. Biol Int. 2010;47:11–35.

Wheewell W. Principles of Geology, being an attempt to explain the former changes of the earth’s surface by reference to causes now in operation. Vol. II. Quart Rev London. 1832;47:103–132.

Rhodes FHT. Gradualism, punctuated equilibrium and the origin of species. Nature. 1983;305(5932):269–272. doi: 10.1038/305269a0. PubMed DOI

Penny D. Darwin, Charles, gradualism and punctuated equilibria. Systematic Zoology. 1983;32:72–74. doi: 10.2307/2413221. DOI

Porter DM. Charles Darwin vascular plant specimens from the voyage of HMS Beagle. Bot J Linn Soc. 1986;93(1):1–172. doi: 10.1111/j.1095-8339.1986.tb01019.x. DOI

Wright S. The role of mutation, inbreeding, crossbreeding, and selection in evolution. Proc Sixth Internatl Cong Genet. 1932;1:356–366.

Carson HL. In: Population Biology and Evolution. Lewontin RC, editor. Syracuse: Syracuse University Press; 1968. The population flush and its genetic consequences; pp. 123–137.

Flegr J. On the "origin" of natural selection by means of speciation. Riv Biol -Biol Forum. 1998;91:291–304.

Flegr J. Frozen evolution or, that's not the way it is, Mr. Darwin A farewell to selfish gene. Praque: Charles University in Prague, Faculty of Science Press; 2008.

Mallet J. Mayr's view of Darwin: was Darwin wrong about speciation? Biol J Linn Soc. 2008;95:3–16. doi: 10.1111/j.1095-8312.2008.01089.x. DOI

Bryant EHS, McCommas A, Combs LM. Morphometric differentiation among experimental lines of the housefly in relation to a bottleneck. Genetics. 1986;114:1213–1223. PubMed PMC

Mezhzherin SV. Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae) Genetika (Moscow) 1997;33:78–86. PubMed

Mikulas R. Proceedings of Paleontological Workshop Held in Honour of Doc.RNDr. Jaroslav Kraft, CSc. Plzen; 2008. The principle of "Frozen Evolution" and its manifestation in the fossil record: the brachiopod genus Aegiromena Havlicek.

Dobzhansky T, Spassky B. Artifitial and natural selection for two behavioral traits in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1969;62:75–80. doi: 10.1073/pnas.62.1.75. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...