Risk of combined exposure of birds to cyanobacterial biomass containing microcystins, acetylcholinesterase inhibitor and anticoagulant
Jazyk angličtina Země Švédsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23353860
PII: NEL330912A23
Knihovny.cz E-zdroje
- MeSH
- 4-hydroxykumariny toxicita MeSH
- antikoagulancia toxicita MeSH
- biomasa MeSH
- cholinesterasové inhibitory toxicita MeSH
- Coturnix * MeSH
- játra účinky léků MeSH
- karcinogeny toxicita MeSH
- kosterní svaly účinky léků MeSH
- ledviny účinky léků MeSH
- mikrocystiny toxicita MeSH
- mozek účinky léků MeSH
- náhodné rozdělení MeSH
- paraoxon toxicita MeSH
- plíce účinky léků MeSH
- rizikové faktory MeSH
- sinice chemie MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-hydroxykumariny MeSH
- antikoagulancia MeSH
- bromadiolone MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- karcinogeny MeSH
- mikrocystiny MeSH
- paraoxon MeSH
OBJECTIVES: The objective of this study was to examine the hypothesis that a combination of cyanobacterial biomass containing microcystins, acetylcholinesterase inhibitor and anticoagulant can enhance avian toxic effects produced by single exposures only. METHODS: A total of 48 two-month-old Japanese quails (Coturnix coturnix japonica) with average body weight of 160 g were randomly divided into 8 experimental groups of six birds and sex ratio of 1:1. Experimental groups of control Japanese quails (C) and birds exposed to single and combined sub-lethal doses of paraoxon (P), bromadiolone (B), and microcystins in cyanobacterial biomass (M) included: C, P, P+B, B, B+M, P+M, M, and P+B+M. During the 10-day exposure birds in the respective groups received biomass containing 61.62 µg microcystins daily (i.e. 26.54 µg MC-RR, 7.62 µg MC-YR and 27.39 µg MC-LR), two 250 μg/kg doses of paraoxon, and two 500 mg/kg doses of bromadiolone. Group responses were compared using standard plasma biochemistry and antioxidant/oxidative stress parameters in tissues. RESULTS: While single and double combinations of toxicants induced responses in individual biochemical parameters measured and evaluated using univariate statistical analysis, those in the triple exposure were most extensive. The principal component analysis of antioxidant/oxidative stress parameters (glutathione reductase, lipid peroxidation, and ferric reducing antioxidant power) in tissues (liver, kidney, heart, brain, lungs, gonads, and pectoralis major muscle) clearly separated the triple group (P+B+M) from all single and double exposure groups and the control and indicated thus marked joint effects in the overall pattern of antioxidant/oxidative stress responses of this group. The separation was driven by the modification of the ferric reducing antioxidant power levels in heart and brain and the cardiac lipid peroxidation level, in particular. CONCLUSIONS: This experiment contributes to the understanding of the pathogenic mechanisms of combined sub-lethal exposure to natural toxins and agrochemicals and may be used for risk assessment of environmental pollution in birds.