Cancer cell response to anthracyclines effects: mysteries of the hidden proteins associated with these drugs

. 2012 Nov 22 ; 13 (12) : 15536-64. [epub] 20121122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23443080

A comprehensive proteome map of T-lymphoblastic leukemia cells and its alterations after daunorubicin, doxorubicin and mitoxantrone treatments was monitored and evaluated either by paired comparison with relevant untreated control and using multivariate classification of treated and untreated samples. With the main focus on early time intervals when the influence of apoptosis is minimized, we found significantly different levels of proteins, which corresponded to 1%-2% of the total amount of protein spots detected. According to Gene Ontology classification of biological processes, the highest representation of identified proteins for all three drugs belong to metabolic processes of proteins and nucleic acids and cellular processes, mainly cytoskeleton organisation and ubiquitin-proteasome pathway. Importantly, we observed significant proportion of changes in proteins involved in the generation of precursor metabolites and energy typical for daunorubicin, transport proteins participating in response to doxorubicin and a group of proteins of immune system characterising response to mitoxantrone. Both a paired comparison and the multivariate evaluation of quantitative data revealed daunorubicin as a distinct member of the group of anthracycline/anthracenedione drugs. A combination of identified drug specific protein changes, which may help to explain anti-cancer activity, together with the benefit of blocking activation of adaptive cancer pathways, presents important approaches to improving treatment outcomes in cancer.

Zobrazit více v PubMed

Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009;16:3267–3285. PubMed

Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. PubMed

Hande K.R. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim. Biophys. Acta. 1998;1400:173–184. PubMed

Nitiss J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer. 2009;9:338–350. PubMed PMC

Pommier Y., Leo E., Zhang H., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010;17:421–433. PubMed PMC

Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. PubMed

Kremer L.C., van Dalen E.C., Offringa M., Ottenkamp J., Voute P.A. Anthracycline-induced clinical heart failure in a cohort of 607 children: Long-term follow-up study. J. Clin. Oncol. 2001;19:191–196. PubMed

Simunek T., Sterba M., Popelova O., Adamcova M., Hrdina R., Gersl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 2009;61:154–171. PubMed

Cortes-Funes H., Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol. 2007;7:56–60. PubMed

Hanash S., Taguchi A. The grand challenge to decipher the cancer proteome. Nat. Rev. Cancer. 2010;10:652–660. PubMed

Hammer E., Bien S., Salazar M.G., Steil L., Scharf C., Hildebrandt P., Schroeder H.W., Kroemer H.K., Volker U., Ritter C.A. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics. 2010;10:99–114. PubMed

Chen S.T., Pan T.L., Tsai Y.C., Huang C.M. Proteomics reveals protein profile changes in doxorubicin-treated MCF-7 human breast cancer cells. Cancer Lett. 2002;181:95–107. PubMed

Jiang Y.J., Sun Q., Fang X.S., Wang X. Comparative mitochondrial proteomic analysis of Rji cells exposed to adriamycin. Mol. Med. 2009;15:173–182. PubMed PMC

Dong X., Xiong L., Jiang X., Wang Y. Quantitative proteomic analysis reveals the perturbation of multiple cellular pathways in jurkat-T cells induced by doxorubicin. J. Proteome Res. 2010;9:5943–5951. PubMed PMC

Moller A., Malerczyk C., Volker U., Stoppler H., Maser E. Monitoring daunorubicin-induced alterations in protein expression in pancreas carcinoma cells by two-dimensional gel electrophoresis. Proteomics. 2002;2:697–705. PubMed

Keenan J., Murphy L., Henry M., Meleady P., Clynes M. Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line. Proteomics. 2009;9:1556–1566. PubMed

Murphy L., Clynes M., Keenan J. Proteomic analysis to dissect mitoxantrone resistance-associated proteins in a squamous lung carcinoma. Anticancer Res. 2007;27:1277–1284. PubMed

Skalnikova H., Halada P., Dzubak P., Hajduch M., Kovarova H. Protein fingerprints of anti-cancer effects of cyclin-dependent kinase inhibition: identification of candidate biomarkers using 2D liquid phase separation coupled to mass spectrometry. Tech. Cancer Res. Treat. 2005;4:447–454. PubMed

Puustinen P., Junttila M.R., Vanhatupa S., Sablina A.A., Hector M.E., Teittinen K., Raheem O., Ketola K., Lin S., Kast J., et al. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma. Cancer Res. 2009;69:2870–2877. PubMed PMC

Haley B., Paunesku T., Protic M., Woloschak G.E. Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int. J. Radiat. Biol. 2009;85:643–655. PubMed PMC

He Y., Rothnagel J.A., Epis M.R., Leedman P.J., Smith R. Downstream targets of heterogeneous nuclear ribonucleoprotein A2 mediate cell proliferation. Mol. Carcinog. 2009;48:167–179. PubMed

Malz M., Weber A., Singer S., Riehmer V., Bissinger M., Riener M.O., Longerich T., Soll C., Vogel A., Angel P., et al. Overexpression of far upstream element binding proteins: A mechanism regulating proliferation and migration in liver cancer cells. Hepatology. 2009;50:1130–1139. PubMed

Obchoei S., Wongkhan S., Wongkham C., Li M., Yao Q., Chen C. Cyclophilin A: Potential functions and therapeutic target for human cancer. Med. Sci. Monit. 2009;15:RA221–32. PubMed

Wang W., Eddy R., Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer. 2007;7:429–440. PubMed PMC

Ren L., Hong S.H., Cassavaugh J., Osborne T., Chou A.J., Kim S.Y., Gorlick R., Hewitt S.M., Khanna C. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene. 2009;28:792–802. PubMed PMC

Skalnikova H., Martinkova J., Hrabakova R., Halada P., Dziechciarkova M., Hajduch M., Gadher S.J., Hammar A., Enetoft D., Ekefjard A., et al. Cancer drug-resistance and a look at specific proteins: Rho GDP-dissociation inhibitor 2, Y-box binding protein 1, and HSP70/90 organizing protein in proteomics clinical application. J. Proteome Res. 2010;10:404–415. PubMed

Resendis-Antonio O., Checa A., Encarnacion S. Modeling core metabolism in cancer cells: Surveying the topology underlying the Warburg effect. PLoS One. 2010;5:e12383. PubMed PMC

Granchi C., Roy S., De Simone A., Salvetti I., Tuccinardi T., Martinelli A., Macchia M., Lanza M., Betti L., Giannaccini G., et al. N-Hydroxyindole-based inhibitors of lactate dehydrogenase against cancer cell proliferation. Eur. J. Med. Chem. 2011;46:5398–5407. PubMed

Li Y., Ray P., Rao E.J., Shi C., Guo W., Chen X., Woodruff E.A., III, Fushimi K., Wu J.Y. A Drosophila model for TDP-43 proteinopathy. Proc. Natl. Acad. Sci. USA. 2010;107:3169–3174. PubMed PMC

Kawahara Y., Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl. Acad. Sci. USA. 2012;109:3347–3352. PubMed PMC

Urushitani M., Sato T., Bamba H., Hisa Y., Tooyama I. Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J. Neurosci. Res. 2010;88:784–797. PubMed

Nilsson J., Gritli-Linde A., Heby O. Skin fibroblasts from spermine synthase-deficient hemizygous gyro male (Gy/Y) mice overproduce spermidine and exhibit increased resistance to oxidative stress but decreased resistance to UV irradiation. Biochem. J. 2000;352:381–387. PubMed PMC

Chen Z., Gopalakrishnan S.M., Bui M.H., Soni N.B., Warrior U., Johnson E.F., Donnelly J.B., Glaser K.B. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): A cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor. J. Biol. Chem. 2011;286:43951–43958. PubMed PMC

Lukong K.E., Larocque D., Tyner A.L., Richard S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J. Biol. Chem. 2005;280:38639–38647. PubMed

Lobato S., Tafuri A., Fernandes P.A., Caliari M.V., Silva M.X., Xavier M.A., Vago A.R. Minichromosome maintenance 7 protein is a reliable biological marker for human cervical progressive disease. J. Gynecol. Oncol. 2012;23:11–15. PubMed PMC

Liu Y.Z., Jiang Y.Y., Hao J.J., Lu S.S., Zhang T.T., Shang L., Cao J., Song X., Wang B.S., Cai Y., et al. Prognostic significance of MCM7 expression in the bronchial brushings of patients with non-small cell lung cancer (NSCLC) Lung Cancer. 2012;77:176–182. PubMed

Marnerides A., Vassilakopoulos T.P., Boltetsou E., Levidou G., Angelopoulou M.K., Thymara I., Kyrtsonis M.C., Pappi V., Tsopra O., Panayiotidis P., et al. Immunohistochemical expression and prognostic significance of CCND3, MCM2 and MCM7 in Hodgkin lymhoma. Anticancer Res. 2011;31:3585–3594. PubMed

Di Paola D., Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J. Cell. Biochem. 2012;113:1333–1347. PubMed

Kumano M., Furukawa J., Shiota M., Zardan A., Zhang F., Beraldi E., Wiedmann R.M., Fazli L., Zoubeidi A., Gleave M.E. Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate. Cancer. Mol. Cancer Therapeut. 2012 doi: 10.1158/1535-7163.MCT-12-0072. PubMed DOI PMC

Kaddar T., Rouault J.P., Chien W.W., Chebel A., Gadoux M., Salles G., Ffrench M., Magaud J.P. Two new miR-16 targets: Caprin-1 and HMGA1, proteins implicated in cell proliferation. Biol. Cell. 2009;101:511–524. PubMed

Solomon S., Xu Y., Wang B., David M.D., Schubert P., Kennedy D., Schrader J.W. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol. Cell Biol. 2007;27:2324–2342. PubMed PMC

Driscoll J.J., Woodle E.S. Targeting the ubiquitin+proteasome system in solid tumors. Semin. Hematol. 2012;49:277–283. PubMed

Rousseau B., Menard L., Haurie V., Taras D., Blanc J.F., Moreau-Gaudry F., Metzler P., Hugues M., Boyault S., Lemiere S., et al. Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma. Hepatology. 2007;46:1108–1118. PubMed

Luo B., Lee A.S. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2012 doi: 10.1038/onc.2012.130. PubMed DOI PMC

Calderwood S.K., Murshid A., Gong J. Heat shock proteins: Conditional mediators of inflammation in tumor immunity. Front. Immunol. 2012;3:75. PubMed PMC

Tsuji T., Matsuzaki J., Caballero O.L., Jungbluth A.A., Ritter G., Odunsi K., Old L.J., Gnjatic S. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells. J. Immunol. 2012;188:3851–3858. PubMed

Kiyamova R., Garifulin O., Gryshkova V., Kostianets O., Shyian M., Gout I., Filonenko V. Preliminary study of thyroid and colon cancers-associated antigens and their cognate autoantibodies as potential cancer biomarkers. Biomarkers. 2012;17:362–371. PubMed

Fucikova J., Kralikova P., Fialova A., Brtnicky T., Rob L., Bartunkova J., Spisek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821–4833. PubMed

Jia R., Li C., McCoy J.P., Deng C.X., Zheng Z.M. SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int. J. Biol. Sci. 2010;6:806–826. PubMed PMC

Passon D.M., Lee M., Rackham O., Stanley W.A., Sadowska A., Filipovska A., Fox A.H., Bond C.S. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc. Natl. Acad. Sci. USA. 2012;109:4846–4850. PubMed PMC

Mihal V., Hajduch M., Noskova V., Janostakova A., Safarova M., Orel M., Kouzmina G., Stary J., Blazek B., Pospisilova D. The analysis of correlations between drug resistance and clinical/laboratory measures found in a group of children with all treated by ALL-BFM 90 protocol. Bull. Cancer. 2004;91:10080–10089. PubMed

Lee B.W., Johnson G.L., Hed S.A., Darzynkiewicz Z., Talhouk J.W., Mehrotra S. DEVDase detection in intact apoptotic cells using the cell permeant fluorogenic substrate, (z-DEVD)2-cresyl violet. Biotechniques. 2003;35:1080–1085. PubMed

Luche S., Diemer H., Tastet C., Chevallet M., van Dorsselaer A., Leize-Wagner E., Rabilloud T. About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis. Proteomics. 2004;4:551–561. PubMed PMC

Hardy E., Castellanos-Serra L.R. “Reverse-staining” of biomolecules in electrophoresis gels: Analytical and micropreparative applications. Anal. Biochem. 2004;328:1–13. PubMed

Gobom J., Nordhoff E., Mirgorodskaya E., Ekman R., Roepstorff P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1999;34:105–116. PubMed

Jarkovska K., Martinkova J., Liskova L., Halada P., Moos J., Rezabek K., Gadher S.J., Kovarova H. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. J. Proteome Res. 2010;9:1289–1301. PubMed

Team RDevelopment Core. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: p. 2011.

Thomas P.D., Campbell M.J., Kejariwal A., Mi H., Karlak B., Daverman R., Diemer K., Muruganujan A., Narechania A. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–2141. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace