Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- cyklodextriny chemie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- enzymy imobilizované chemie metabolismus MeSH
- magnetické nanočástice chemie MeSH
- Magnetospirillum chemie metabolismus MeSH
- opakované použití vybavení MeSH
- oxid železnato-železitý chemie izolace a purifikace metabolismus MeSH
- proteiny chemie metabolismus MeSH
- skot MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stabilita enzymů MeSH
- teplota MeSH
- trypsin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklodextriny MeSH
- enzymy imobilizované MeSH
- magnetické nanočástice MeSH
- oxid železnato-železitý MeSH
- proteiny MeSH
- trypsin MeSH
In this work, magnetosomes produced by microorganisms were chosen as a suitable magnetic carrier for covalent immobilization of thermostable trypsin conjugates with an expected applicability for efficient and rapid digestion of proteins at elevated temperatures. First, a biogenic magnetite was isolated from Magnetospirillum gryphiswaldense and its free surface was coated with the natural polysaccharide chitosan containing free amino and hydroxy groups. Prior to covalent immobilization, bovine trypsin was modified by conjugating with α-, β- and γ-cyclodextrin. Modified trypsin was bound to the magnetic carriers via amino groups using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling reagents. The magnetic biomaterial was characterized by magnetometric analysis and electron microscopy. With regard to their biochemical properties, the immobilized trypsin conjugates showed an increased resistance to elevated temperatures, eliminated autolysis, had an unchanged pH optimum and a significant storage stability and reusability. Considering these parameters, the presented enzymatic system exhibits properties that are superior to those of trypsin forms obtained by other frequently used approaches. The proteolytic performance was demonstrated during in-solution digestion of model proteins (horseradish peroxidase, bovine serum albumin and hen egg white lysozyme) followed by mass spectrometry. It is shown that both magnetic immobilization and chemical modification enhance the characteristics of trypsin making it a promising tool for protein digestion.
Citace poskytuje Crossref.org