Physiological and biochemical responses to cold and drought in the rock-dwelling pulmonate snail, Chondrina avenacea
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aklimatizace fyziologie MeSH
- anaerobióza fyziologie MeSH
- hibernace MeSH
- hlemýždi fyziologie MeSH
- letní spánek MeSH
- metabolomika MeSH
- nízká teplota * MeSH
- období sucha * MeSH
- roční období MeSH
- spotřeba kyslíku fyziologie MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails' ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as -21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.
Zobrazit více v PubMed
J Biol Chem. 1964 Dec;239:4018-20 PubMed
Cryo Letters. 2010 Jul-Aug;31(4):329-40 PubMed
Cell Tissue Res. 1976 Oct 13;173(3):417-21 PubMed
Physiol Biochem Zool. 2012 May-Jun;85(3):274-84 PubMed
Comp Biochem Physiol B Biochem Mol Biol. 1994 Oct-Nov;109(2-3):175-89 PubMed
Comp Biochem Physiol A Mol Integr Physiol. 2004 Oct;139(2):205-11 PubMed
Comp Biochem Physiol B Biochem Mol Biol. 1998 Jul;120(3):437-48 PubMed
Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):733-54 PubMed
Cryobiology. 2001 Jun;42(4):266-73 PubMed
J Insect Physiol. 2001 Jun;47(6):533-542 PubMed
Cryobiology. 2005 Feb;50(1):48-57 PubMed
Q Rev Biol. 1990 Jun;65(2):145-74 PubMed
Physiol Biochem Zool. 1999 Jul-Aug;72(4):493-501 PubMed
Comp Biochem Physiol B Biochem Mol Biol. 2001 Dec;130(4):435-59 PubMed
Physiol Rev. 1985 Oct;65(4):799-832 PubMed
Comp Biochem Physiol B. 1977;56(2):181-7 PubMed
PLoS One. 2011;6(9):e25025 PubMed
J Physiol Pharmacol. 2006 Nov;57 Suppl 8:93-105 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2009 Nov;150(4):481-6 PubMed
Cryo Letters. 2001 May-Jun;22(3):183-90 PubMed
J Comp Physiol B. 2002 May;172(4):347-54 PubMed
J Comp Physiol B. 1996;166(6):375-81 PubMed
Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):407-19 PubMed
J Comp Physiol B. 2002 Oct;172(7):619-25 PubMed
J Exp Zool A Ecol Genet Physiol. 2011 Dec 1;315(10):593-601 PubMed
J Insect Physiol. 2006 Feb;52(2):113-27 PubMed
Anal Biochem. 1985 Oct;150(1):76-85 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2005 Feb;140(2):165-74 PubMed
Comp Biochem Physiol A Comp Physiol. 1977;56(2):211-5 PubMed