Physiological and biochemical responses to cold and drought in the rock-dwelling pulmonate snail, Chondrina avenacea

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23516021

The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails' ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as -21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.

Zobrazit více v PubMed

J Biol Chem. 1964 Dec;239:4018-20 PubMed

Cryo Letters. 2010 Jul-Aug;31(4):329-40 PubMed

Cell Tissue Res. 1976 Oct 13;173(3):417-21 PubMed

Physiol Biochem Zool. 2012 May-Jun;85(3):274-84 PubMed

Comp Biochem Physiol B Biochem Mol Biol. 1994 Oct-Nov;109(2-3):175-89 PubMed

Comp Biochem Physiol A Mol Integr Physiol. 2004 Oct;139(2):205-11 PubMed

Comp Biochem Physiol B Biochem Mol Biol. 1998 Jul;120(3):437-48 PubMed

Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):733-54 PubMed

Cryobiology. 2001 Jun;42(4):266-73 PubMed

J Insect Physiol. 2001 Jun;47(6):533-542 PubMed

Cryobiology. 2005 Feb;50(1):48-57 PubMed

Q Rev Biol. 1990 Jun;65(2):145-74 PubMed

Physiol Biochem Zool. 1999 Jul-Aug;72(4):493-501 PubMed

Comp Biochem Physiol B Biochem Mol Biol. 2001 Dec;130(4):435-59 PubMed

Physiol Rev. 1985 Oct;65(4):799-832 PubMed

Comp Biochem Physiol B. 1977;56(2):181-7 PubMed

PLoS One. 2011;6(9):e25025 PubMed

J Physiol Pharmacol. 2006 Nov;57 Suppl 8:93-105 PubMed

Comp Biochem Physiol C Toxicol Pharmacol. 2009 Nov;150(4):481-6 PubMed

Cryo Letters. 2001 May-Jun;22(3):183-90 PubMed

J Comp Physiol B. 2002 May;172(4):347-54 PubMed

J Comp Physiol B. 1996;166(6):375-81 PubMed

Comp Biochem Physiol B Biochem Mol Biol. 2003 Jul;135(3):407-19 PubMed

J Comp Physiol B. 2002 Oct;172(7):619-25 PubMed

J Exp Zool A Ecol Genet Physiol. 2011 Dec 1;315(10):593-601 PubMed

J Insect Physiol. 2006 Feb;52(2):113-27 PubMed

Anal Biochem. 1985 Oct;150(1):76-85 PubMed

Comp Biochem Physiol C Toxicol Pharmacol. 2005 Feb;140(2):165-74 PubMed

Comp Biochem Physiol A Comp Physiol. 1977;56(2):211-5 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...